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MAXIMUM PRINCIPLE AND CONVERGENCE ANALYSIS FOR
THE MESHFREE POINT COLLOCATION METHOD∗

DO WAN KIM† AND WING KAM LIU‡

Abstract. The discrete Laplacian operator is considered in the sense of the meshfree point
collocation method which will be called the strong meshfree Laplacian operator. To define the
strong meshfree Laplacian operator, we use the fast version of the generalized moving least square
approximation, which can calculate the approximated derivatives of shape functions. Some types
of the locally layered node distribution are defined in this paper, and two specific domains are
constructed onto which we can distribute locally layered nodes. At such nodes, the discrete maximum
principle can be shown to hold through the representation formula for the strong meshfree Laplacian
operator. The discrete maximum principle, together with the reproducing property of the meshfree
approximations, results in an a priori estimate for the strong meshfree Laplacian operator in the
nodal solution space. Furthermore, the a priori estimate we have obtained guarantees the existence
and the uniqueness of the numerical solution and plays a central role in achieving converged results
for the Poisson problem with Dirichlet boundary conditions in the nodal solution space. The order
of convergence of the nodal solutions can be raised up to O(h2) at the proposed type of nodes in
specific domains. For generally shaped domains immersed in the previously mentioned domains, we
can obtain the first order convergence result of O(h).
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1. Introduction. In the field of numerical computations, meshfree methods
have been developed for more than a decade. In order to solve many physical prob-
lems represented by partial differential equations, researchers and scientists have pro-
posed meshfree approximations, examples of which include the element free Galerkin
method [3], the moving least square reproducing kernel method [10, 17], the partition
of unity finite element method [2], the reproducing kernel hierarchical partition of
unity [11, 12, 13, 15], the reproducing kernel element method [14, 16, 18, 20], etc.

The above pioneering work has presented a common framework for meshfree
methodologies and shown the potential of meshfree methods. In many cases, the work
in meshfree fields has been based on the weak formulation of the model equation, but
only a few papers supply the mathematical convergence for numerical solutions in the
one-dimensional (1-D) case [2, 12].

In this paper, we focus on uniform convergence analysis for the numerical so-
lution of the strong formulation using a meshfree approximation. Here we use the
generalized moving least square approximation for efficient calculation of higher order
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shape function derivatives, which stem from the reproducing kernel hierarchical par-
tition of unity method by Li and Liu [11, 12], and from the fast moving least square
reproducing kernel approximation method by D. W. Kim and Y. Kim [8, 9]. Such
approximations are desired to convert the higher order differential operator into a
discrete one by attacking the strong formulation and utilizing the point collocation
method. The meshfree point collocation method (MPCM) follows the philosophy of
the meshfree method in which no structured meshes are used.

In mathematical analyses of the Galerkin formulation using meshfree approxi-
mations, difficulties arise mainly in the treatment of Dirichlet boundary conditions.
The construction of a test function space which belongs to the Sobolev space H1

0 (Ω)
is a challenging issue in meshfree Galerkin formulations, particularly for higher di-
mensions. However, once one can overcome this difficulty, then the remaining part
of the convergence analysis follows similarly from the mathematical theories of the
finite element method. For the finite element method, uniform convergence has been
shown by Ciarlet and Raviart [4] for second order elliptic models under some specially
shaped meshes. To achieve first order uniform convergence, they used the discrete
maximum principle and obtained an a priori estimate for the discrete solution of the
Poisson-type problem. For local pointwise error estimates in finite element methods,
one can see the important results for second order elliptic problems in [5] written by
L. B. Wahlbin.

The meshfree point collocation methods, in contrast to the Galerkin formulation,
have few mathematical results, as the theory of function spaces is not directly avail-
able. Thus, the objective of this paper is to build the underlying theories for the
MPCM, particularly for the discrete Laplacian operator, and based on those theo-
ries to prove uniform convergence of the nodal solutions of the Poisson problem with
Dirichlet boundary conditions. For the convergence estimate in the MPCM, the first
step is to define the rigorous point collocation scheme—an important portion of the
mathematical analysis. Next, we will show that the discrete Laplacian operator sat-
isfies the discrete maximum principle for some classes of nodes, and then obtain an
a priori estimate for the strong meshfree Laplacian operator on the nodal solution
space, provided the discrete maximum principle holds.

As for the discrete maximum principle itself, many researchers are interested in
cases in which it occurs and their applications [1, 4, 7, 19, 21, 22]. The discrete max-
imum principle for the discretized Laplacian operator in the finite difference method
on evenly spaced grid points is well-known and is closely related to the mean-value
property for the Laplace solutions. This means that the average value on the sur-
rounding four points in a five-point stencil for the Laplacian operator is equal to the
center value. Inspired by the difference scheme for the Laplacian operator in the
finite difference method, we can obtain the representation formula at each node for
the strong meshfree Laplacian operator which is followed by the discrete maximum
principle.

As a result of the discrete maximum principle, an a priori estimate for the strong
meshfree Laplacian is derived in the nodal solution space. The a priori estimate
guarantees the existence and the uniqueness of the numerical solution governed by the
point collocation scheme. We finally achieve convergence for the numerical solutions of
the Poisson problem with Dirichlet boundary conditions. The convergence order can
be up to second order on some specific domains, while we have first order convergence
for general domains immersed in the specific domains.

We know that finite difference methods and finite element methods have discrete
maximum principle for elliptic partial differential equations. However, for meshfree
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strong form collocation methods, the authors are not aware of any previous theoretical
results. This is an important aspect, and this is the first paper to the authors knowl-
edge that deals with the theoretical foundation of the meshfree collocation method.

2. Generalized moving least square reproducing kernel approximation.
To make this paper self-contained, we will describe how to obtain the meshfree approx-
imation of the Laplacian operator. For a moment, we will make general statements
on the moving least square reproducing kernel approximation as we can see similar
content in the literature [8, 11, 12].

Let Ω be a bounded domain in R
n and also Λ ≡ {xI ∈ Ω | I = 1, . . . , N} where

Λ is a set of distributed nodes in Ω. Throughout the paper, the multi-index notation
and related definitions are employed as follows:

α = (α1, . . . , αn), |α| ≡
n∑

i=1

αi, α! ≡ α1!α2! · · ·αn!,(2.1)

x = (x1, . . . , xn) ∈ R
n, xα ≡ xα1

1 . . . xαn
n , Dα

x ≡ ∂α1
x1

. . . ∂αn
xn

,(2.2)

where αk’s are nonnegative integers and α is called the multi-index. We consider a
vector of complete basis functions of order m in R

n such that

Bm(x) = (bβ1(x), bβ2(x), . . . , bβL
(x))T , |βk| ≤ m,(2.3)

where βk’s are all multi-indices in lexicographical order. Here we note that the number

of βk’s is L ≡ (m+n)!
m!n! and the complete basis of order m means that the L×L matrix

JBm
(0) is invertible if we define the Jacobian of Bm(x) at 0 as

JBm
(0) ≡ lim

x→0
(Dα

x bβ(x)) , |α|, |β| ≤ L.(2.4)

Let Br(z) ≡ {y | ‖y−z‖ < r} be the r-ball in R
n with center z. We introduce the

continuous nonnegative window function with its support on B1(0) of the following
type

W (x) = (1 − ‖x‖ 1
2 )2 for ‖x‖ < 1, x ∈ R

n(2.5)

and the continuous positive dilation function

ρ(x) > 0 on Ω.(2.6)

For brevity, we will use ρx instead of ρ(x).
Remark 1. The decreasing rate of the window function values apart from the

origin is essential in proving the discrete maximum principle for the strong meshfree
Laplacian operator introduced in a later section. The window function of the form
(2.5) meets this decreasing rate. The support of the window function in this paper
has the n-dimensional unit ball shape.

Remark 2. The dilation parameter used in most meshfree methods can be re-
placed with the dilation function defined on the whole domain Ω. The required
regularity for the dilation function is only the continuity to be well defined when
the center of window function moves to the evaluation point. The dilation function
controls the support and its size of shape functions, and thus is directly available to
the geometrically multiple scale problems [9].

The subsequent procedure to make the shape functions and the approximated
derivative operators is addressed in detail in Appendix I. This includes the generalized



518 DO WAN KIM AND WING KAM LIU

reproducing properties of meshfree shape functions and the proposal of a sufficient
condition to regenerate the dilated basis functions. These are novel differences from
the standard moving least square reproducing kernel approximation.

From this point forward, we restrict our attention to polynomial basis functions;
that is, if there is no comment, then the basis functions will be maintained as complete
polynomials up to order m

Bm(x) = (xβ1 ,xβ2 , . . . ,xβL), |βk| ≤ m(2.7)

throughout the mathematical analysis.
For the subsequent analysis, we require the definition of the proper node distri-

butions.
Definition 1 (proper triple). Let (Ω,Λ, ρx) be the triple of a domain, a set of

distributed nodes on Ω, and a dilation function. The triple (Ω,Λ, ρx) is said to be
proper if the moment matrix Mρx(xI) is invertible for every interior node xI ∈ Λ∩Ω
under the dilation function ρx.

This definition is preventive of the degenerate distribution of nodes to approxi-
mate functions in the meshfree method.

3. Problem statement and the definition of the discrete problem. We
will now consider the discretization of the Poisson problem as the popular model in
the second order elliptic problem with Dirichlet boundary conditions and prepare the
terminology for its convergence analysis. The Poisson equation uses the Laplacian
operator, the principal operator in most physical models. Furthermore, the Laplacian
is an interesting operator in itself, since it has the salient feature referred to as the
maximum principle. Many mathematical theories have been developed based on this
property. Among them, the regularity and the uniqueness of solutions of the Poisson
equation is highly involved with the maximum principle. For the discrete case anal-
ogous to the continuous one, the discrete maximum principle has been reported not
only for the Galerkin formulation [4] in the finite element method but also for the
solution of some algebraic systems [7].

We consider the Poisson problem with Dirichlet data on the boundary of a do-
main Ω and propose the corresponding discrete problem using the point collocation
approach based on the generalized meshfree approximation operators described in
the previous section and Appendix I in detail. The model problem considered in this
paper is governed by the following equations:

(CP)

{
Δu = f, in Ω

u = g, on Γ,
(3.1)

where Γ ≡ ∂Ω represents the boundary of the open bounded domain Ω. According
to Theorem 6.13 in [6] for the general existence and regularity of a unique solution
of (CP), if Ω is a bounded domain satisfying an exterior sphere condition at every
boundary point and we have f ∈ Cs−2, α(Ω) for s = 3, 4 and g ∈ C(∂Ω), then the
Dirichlet problem (CP) has a unique solution u ∈ C0(Ω) ∩ Cs, α(Ω), where C0(Ω) is
the vector space to consist of all bounded and uniformly continuous functions on Ω
and Cs,α(Ω) represents the Hölder space of exponent 0 < α ≤ 1 equipped with the
norm

‖v‖Cs,α(Ω) ≡ max
0≤|β|≤s

sup
x∈Ω

|Dβv(x)| + max
0≤|β|≤s

sup
x,y∈Ω,x�=y

|Dβv(x) −Dβv(y)|
|x − y|α .(3.2)
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To discretize the problem (CP) in terms of meshfree point collocation method,
we focus on the second order meshfree approximation (m = 2); that is, the complete
polynomial basis functions up to second order are adopted to obtain all the shape
functions (see Appendix I). It is taken to satisfy the minimum order of consistency for
the discretization of second order partial differential equations since we approximate
the Laplace operator in a pointwise manner. Higher order approximation could be
better than the second order one in general but, since the focus in this paper is on
analyzing the structure of the meshfree Laplace operator, the second order meshfree
approximation must be the starting point. We also consider the 2-D space (n = 2) and
hence the relevant multi-index βk (k = 1, . . . , 6) appearing in the basis polynomials
(2.7) which are fixed in lexicographical order as follows:

(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2).(3.3)

The analysis in this paper is expected to hold for the higher dimensions as well as
for higher orders. It could depend on the construction of the local nodes and the
adequate dilation function.

In order to define the discrete counterpart of the continuous problem (3.1), we
assume Λ is a set of well distributed nodes on the domain Ω and its boundary, so that
(Ω,Λ, ρx) becomes the proper triple. Let C(Ω) be the space of continuous functions
up to the boundary of Ω, and V be the finite dimensional space of functions defined
on Λ. We will call the function space V the nodal solution space if V is equipped
with the following seminorm:

‖v‖∞,A ≡ max
xK∈A

|vK | when v ∈ V,(3.4)

where A is a nonempty subset of Λ. In the case when A = Λ, the seminorm becomes
the norm on V .

If the restriction map i : C(Ω) → V to Λ is defined such that, for any u ∈ C(Ω),

i(u)(xI) ≡ u(xI) for any xI ∈ Λ,(3.5)

then the point collocation Laplacian operator Δρ can be defined on V into itself such
that if v ∈ V , then

(Δρv)(xI) ≡
∑
xJ∈Λ

v(xJ)ψΔ
J (xI) for any xI ∈ Λ,(3.6)

where the function ψΔ
J (xI) will be called the Laplacian shape function at xI and is

defined by

ψΔ
J (xI) ≡ ψ

[(2,0)]
J (xI) + ψ

[(0,2)]
J (xI)(3.7)

which is the sum of the (2, 0)th and (0, 2)th approximate derivatives whose definition
comes from (7.3) in Appendix I. In fact, the operator Δρ stems from the meshfree

approximated Laplacian operators D
(2,0)
m,ρx + D

(0,2)
m,ρx ∼ Δ. Hereafter, we will often use

the symbol uJ instead of u(xJ) if u ∈ V and xJ ∈ Λ.
Using these operators i and Δρ, we define the meshfree point collocation dis-

cretization of Poisson problem (CP) as the following:

uh ∈ V :

{
Δρuh = i(f), on Λo

uh = g, on Λb
,(3.8)
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where Λ = Λo ∪ Λb and Λo and Λb are sets of interior nodes and Dirichlet boundary
nodes, respectively. Consequently, our discrete problem for (CP) results in finding
the nodal solution uh ∈ V such that

(DP)

{
uh ∈ Vg ≡ {vJ ∈ R | vK = g(xK) for all xK ∈ Λb} ⊂ V

Δρuh = i(f), on Λo.
(3.9)

This final formulation will be called the discrete Poisson problem (DP) and the op-
erator Δρ will be called the strong meshfree Laplacian operator.

In order to attain the error estimate, we begin discussion of the discrete maximum
principle for the strong meshfree Laplacian operator Δρ.

4. Discrete maximum principle for the strong meshfree Laplacian op-
erator Δρ. Let (Ω,Λ, ρx) be the proper triple. For convenience sake, the r-neighbor
nodes of x are assumed to be the following set:

Λr(x) ≡ {xK ∈ Λ |xK ∈ Br(x)}, r > 0(4.1)

and the symbol A∗ for a subset A ⊂ Λ implies the set defined by

A∗ ≡
⋃

xJ∈A

ΛρxJ
(xJ).(4.2)

If there is no confusion, we briefly write Λ(xK) instead of ΛρxK
(xK) for any node

xK ∈ Λ.
We now state the definition of the discrete maximum principle.
Definition 2 (discrete maximum principle for the operator Δρ

). Assume the
proper triple (Ω,Λ, ρx) is given. We will say the strong meshfree Laplacian Δρ satisfies
the discrete maximum principle at a node xI ∈ Λ if the condition (Δρv)(xI) ≥ 0 for
v ∈ V implies that either vI < maxxK∈Λ(xI)\{xI} vK or vK = vI for all xK ∈ Λ(xI).
We also will say the operator Δρ satisfies the discrete maximum principle on a subset
A ⊂ Λ if it satisfies the discrete maximum principle at all nodes in A.

In fact, the discrete maximum principle for the discrete Laplace operator is known
to depend on the geometry of the mesh in the finite element method and the orthog-
onal grid in the finite difference method, respectively. For example, if all the angles
of the triangles of the triangulation on a domain are less than or equal to π

2 , then the
discrete maximum principle is known to hold in the finite element method [4]. Hence
it can also be expected that the relative attitude between nodes strongly affects this
kind of phenomenon in the meshfree area. Therefore, we are interested in finding such
node distributions from the meshfree point of view. On the other hand, to perform
the convergence analysis on such nodes, we have to inspect closely the moment matrix
and its inverse, since it is located in the core of Laplacian shape functions in (3.7).

The moment matrix for the given set Λ of nodes has the following form in the
generalized moving least square reproducing kernel approximation [17] (see also (7.5)
in Appendix I)

Mρx(x) =
∑
xI∈Λ

Bm

(
xI − x

ρx

)
BT

m

(
xI − x

ρx

)
W

(
xI − x

ρx

)
,(4.3)

where Bm

(
y−x
ρx

)
is the normalized basis polynomial up to order m at the center



MAXIMUM PRINCIPLE AND CONVERGENCE ANALYSIS 521

ξ J

xI

xJ

1

1

SkS1 Sp

x I,rξ=T ( x )

x −plane ξ −plane

q−1

q
2

3

q

q−1

2

3

r

1

0

Fig. 4.1. The locally (p, q)-layered nodes (x-plane) and the normalizing ones (ξ-plane) by
TxI ,r(x). SK ’s are the layers of the normalized nodes.

point x ∈ Bρx(x) such that

Bm

(
y − x

ρx

)
=

((
y − x

ρx

)β1

,

(
y − x

ρx

)β2

, . . . ,

(
y − x

ρx

)βL
)
, |βk| ≤ m.(4.4)

To calculate the moment matrix and its inverse concretely, we need to focus on some
class of node distributions. In order to define some classes of nodes, we must first
introduce the normalizing transformation Tx,r(y) : Br(x) → B1(0) such that, as
shown in Figure 4.1,

ξ = Tx,r(y) ≡ y − x

r
.(4.5)

Definition 3 (layered node distribution). Let Ar(xI) ≡ {xK |xK ∈ Br(xI)} be
the finite subset of nodes within the distance r around xI . The set of nodes Ar(xI) is
said to be the locally (p, q)-layered at xI if all the normalized nodes in TxI ,r(Ar(xI))
remain on the p-layer sets S1, . . . , Sp in the increasing radial direction from the origin
and the q nodes are distributed evenly on each layer. All the layer sets Sk’s have the
spherical shape only. Furthermore, we say that the node set Λ is possibly layered if, for
any interior node xI ∈ Λ, Λ(xI) is the locally (p, q)-layered at xI for some p, q > 0.

As a matter of fact, the possibly layered distribution of nodes is not a simple
matter since the property of the locally (p, q)-layered at every neighboring node has
to be achieved. Thus, we will propose two kinds of available distribution of nodes and
show that they are the possibly layered. On such types of the possibly layered nodes,
the discrete maximum principle for the strong meshfree Laplacian will be proven.

We begin with the calculation of the moment matrix that will play an essential
role in proving the discrete maximum principle on some possibly layered nodes. If the
subset of nodes Λ(xI) ⊂ Λ is the locally (p, q)-layered at xI , then the moment matrix
at xI can be calculated from the following manner:

Mρx(xI) = W (0)Bm(0)Bm(0)T +

p∑
K=1

δK DK

⎛⎝ ∑
ξJ∈SK

Bm(ζJ)Bm(ζJ)T

⎞⎠ DK ,

(4.6)
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where SK is the Kth layer set in the definition and for any nonzero ξJ ∈ SK we use
the symbols

ξJ ≡ TxI
(xJ), τK ≡ |ξ1| = · · · = |ξq| < 1, ζJ ≡ ξJ

τK
,(4.7)

δK ≡ W (ξ1) = · · · = W (ξq),(4.8)

and DK is the diagonal matrix such that

DK ≡ Diag(τ
|α1|
K , τ

|α2|
K , . . . , τ

|αL|
K ).(4.9)

Since we have assumed n = 2, we have, without loss of generality, the ζJ ’s distributed
evenly on the layer SK and represented by

ζj =

(
cos

(
θK + j

2π

q

)
, sin

(
θK + j

2π

q

))
, j = 0, 1, . . . , q − 1,(4.10)

where θK is the angle of the starting node ζ1 on SK . If the distribution of nodes around
xI is assumed to be the locally (p, q)-layered at xI , then, from the trigonometric
identities in Appendix II, the term

∑
ξJ∈SK

B(ζJ)B(ζJ)T in (4.6) has the following
forms for the cases when q = 4 and q ≥ 5:

•
∑

ξJ∈SK
B(ζJ)B(ζJ)T when q = 4,

4

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 1

2 0 1
2

0 1
2 0 0 0 0

0 0 1
2 0 0 0

1
2 0 0 3

8 + 1
8 cos 4θK

1
8 sin 4θK

1
8 − 1

8 cos 4θK
0 0 0 1

8 sin 4θK
1
8 − 1

8 cos 4θK − 1
8 sin 4θK

1
2 0 0 1

8 − 1
8 cos 4θK − 1

8 sin 4θK
3
8 + 1

8 cos 4θK

⎤⎥⎥⎥⎥⎥⎥⎦ ;(4.11)

•
∑

ξJ∈SK
B(ζJ)B(ζJ)T when q ≥ 5

q

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 1

2 0 1
2

0 1
2 0 0 0 0

0 0 1
2 0 0 0

1
2 0 0 3

8 0 1
8

0 0 0 0 1
8 0

1
2 0 0 1

8 0 3
8

⎤⎥⎥⎥⎥⎥⎥⎦ .(4.12)

Here we note that, if the number of nodes on the layer SK is greater than or equal to
5, then the moment matrix does not depend on θK . This means that the (p, q)-layered
node distributions for q ≥ 5 makes the rotation invariant moment matrix.

The strong meshfree Laplacian operator Δρ at xI on the (p, q)-layered node set
Λ(xI) can be calculated from the equivalent form:∑

xJ∈Λ(xI)

uh(xJ)ψΔ
J (xI) = dΔ Mρx(xI)

−1 Bm(0)W (0)uh(0)

+ dΔ Mρx(xI)
−1

p∑
K=1

δK DK

[
Bm

(
ζK1

)
Bm

(
ζK2

)
· · · Bm

(
ζKq

)]
uK
h ,(4.13)
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(II) Type II : Locally ( p, 6 )−layered nodes
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Fig. 4.2. Two types of locally (p, q)-layered node distribution: (I) the set of Type I and, (II)
the set of Type II.

where uK
h ≡ [uh(ξK1 ), . . . , uh(ξKq )]T is a column vector, the superscript of ξKJ means

that ξJ is on SK , and when m = 2 the symbol dΔ designates the following row vector:

dΔ ≡
[
0, 0, 0,

(2, 0)!

ρ
|(2,0)|
xI

, 0,
(0, 2)!

ρ
|(0,2)|
xI

]
.(4.14)

We now consider the two kinds of locally (p, q)-layered node distributions. The
first one is composed of orthogonally positioned nodes and the other comes from a
hexagonal structure.

In constructing specific types of nodes, we use the symbol δK as defined in (4.8)
including δ0 ≡ W (0) = 1, or equivalently we have δK ≡ W (τK) since our window
function W in (2.5) depends only on the radial values. The terminology of the multi-
index βk defined in (3.3) is also utilized.

Let h > 0 and θ be the given angle.

4.1. Type I: The locally (p, 4)-layered nodes (p = 2, 3). Let Arp(0) be
the set consisting of the following nodes as shown in Figure 4.2(I):

{(0, 0)} ∪
p⋃

K=1

{(
tK h cos

(
θK + i

2π

4

)
, tK h sin

(
θK + i

2π

4

) ∣∣∣∣ i = 0, 1, 2, 3

}
,

(4.15)

where tK =
√

2
K−1

, θK = θ + (K − 1)π4 , and

rp = h

√
2 + 2

2
, h

2 +
√

5

2
, respectively when p = 2, 3.(4.16)

If A is a subset of nodes with xI as its center node and it has the same property as
Arp(0) for p = 2, 3 under the normalizing transform (4.5), then it is said to be the set
of Type I at the node xI . In this case, the values of τK ’s in (4.7) are calculated as the
following:

τK =
h tK
rp

, 1 ≤ K ≤ p = 2, 3.(4.17)



524 DO WAN KIM AND WING KAM LIU

When p = 3, the determinant of the moment matrix in (4.6) at the center node can
be calculated such as

|Mrp(0)| = 26τ
2
∑6

k=1
|βk|

1 δ2 (δ1 + 2 δ2 + 4 δ3)
2 (δ1 + 16 δ3)AR 
= 0,(4.18)

where the symbol AR stands for the following positive value:

AR = δ1 + 4 δ2 + 16 δ3 + 4 δ1δ2 + 16 δ2δ3 + 36 δ1δ3.(4.19)

When p = 2, we may simply set δ3 = 0.
On this kind of local node distribution, the strong meshfree Laplacian operator

at the origin is calculated from the equation (4.13) as follows:

ψΔ
0 (0) = − 4

h2

δ0 (δ1 + 2 δ2 + 4 δ3)

AR
,(4.20)

ψΔ
ξJ∈S1

(0) =
1

h2

δ1 (1 − 4 δ2 − 12 δ3)

AR
≡ 1

h2
A1,(4.21)

ψΔ
ξJ∈S2

(0) =
1

h2

2 δ2 (1 + 2 δ1 − 4 δ3)

AR
≡ 1

h2
A2,(4.22)

ψΔ
ξJ∈S3

(0) =
1

h2

4 δ3 (1 + 3 δ1 + 2 δ2)

AR
≡ 1

h2
A3,(4.23)

where SK (K = 1, 2, 3) is the Kth layer and there are 4-nodes on each SK . Therefore,
from (4.20), (4.21), (4.22), and (4.23) and the fact that A1 + A2 + A3 = δ1+2 δ2+4 δ3

AR

since δ0 ≡ W (0) = 1, we have, for any v ∈ V ,

h2
∑

xJ∈Ar(0)

v(xJ)ψΔ
J (0) =

3∑
k=1

Ak

⎛⎝−4 v(0) +
∑

ξJ∈Sk

v(ξJ)

⎞⎠ .(4.24)

If we set δ3 = 0 in the above formula, then we obtain the case when p = 2. With
these types of nodes, the moment matrix depends on the rotation of nodes (θ) but
the discrete Laplacian shape function ψΔ

J (0) is invariant under the rotation.
Summarizing the above discussion, we have the following lemma on the set of

Type I at xI .
Lemma 1. Let (Ω,Λ, ρx) be a proper triple and Λ(xI) ⊂ Λ be the set of Type I at

the node xI . Then we have the following properties:
1. The following representation formula for the strong meshfree Laplacian opera-

tor holds:

∑
xJ∈Λ(xI)

v(xJ)ψΔ
J (xI) =

1

h2

p∑
K=1

AK

⎛⎝−4 v(xI) +
∑

ξJ∈SK

v(ξJ)

⎞⎠(4.25)

for some coefficients AK which depend on the window function.
2. If the coefficients AK are positive, then the following type of inverse inequality

for the Laplacian shape functions holds:∑
xJ∈Λ(xI)

∣∣ψΔ
J (xI)

∣∣ ≤ 8

h2
.(4.26)
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Proof. The first property directly comes from (4.24). For the second property,
if AK > 0 for K = 1, . . . , p where p = 2, 3, then we have the following bound from
(4.20), (4.21), (4.22), and (4.23):∑

xJ∈Λ(xI)

∣∣ψΔ
J (xI)

∣∣ = −ψΔ
I (xI) +

∑
xJ∈Λ(xI)\{xI}

ψΔ
J (xI) =

8

h2

p∑
K=1

AK ≤ 8

h2
(4.27)

since ψΔ
I (xI) is the only nonpositive term among ψΔ

J (xI) for all J , xJ ∈ Λ(xI).

4.2. Type II: The locally (p, 6)-layered nodes (p = 1, 2). Let Arp(0) be
the set consisting of the following nodes as shown in Figure 4.2(II):

{(0, 0)} ∪
p⋃

K=1

{(
tK h cos

(
θK + i

2π

6

)
, tK h sin

(
θK + i

2π

6

) ∣∣∣∣ i = 0, 1, 2, 3, 4, 5

}
,

(4.28)

where tK =
√

3
K−1

, θK = θ + (K − 1)π6 , and

rp = h

√
3
p−1

+
√

3
p

2
, p = 1, 2.(4.29)

If A is a subset of nodes with xI as its center node and it has the same property as
Arp(0) for p = 1, 2 under the normalizing transform (4.5), then it is said to be the set
of Type II at the node xI . Here, we can see that

τK =
h tK
rp

, 1 ≤ K ≤ p = 1, 2.(4.30)

When p = 2, the determinant of the moment matrix in (4.6) at the center node in
this case can be calculated as follows:

|Mrp(0)| = 35τ
2
∑6

k=1
|βk|

1 (δ1 + 3 δ2)
2(δ1 + 9 δ2)

2 AH 
= 0,(4.31)

where the symbol AH means the following positive value:

AH = δ1 + 9 δ2 + 24 δ1δ2.(4.32)

In the case when p = 1, we can set δ2 = 0.
On this kind of local node distribution, the strong meshfree Laplacian operator

at the origin is derived from (4.13) as follows:

ψΔ
0 (0) = − 4

h2

δ0 (δ1 + 3 δ2)

AH
,(4.33)

ψΔ
ξJ∈S1

(0) =
1

h2

2
3δ1 (1 − 12 δ2)

AH
≡ 1

h2
A1,(4.34)

ψΔ
ξJ∈S2

(0) =
1

h2

2δ2 (1 + 4 δ1)

AH
≡ 1

h2
A2,(4.35)

where SK (K = 1, 2) is the Kth layer and there are 6-nodes in each SK . Thus, from

(4.33), (4.34), (4.35), and the identity A1 + A2 =
2
3 (δ1+3 δ2)

AH
, we also obtain, for any

v ∈ V ,

h2
∑

xJ∈Ar(0)

v(xJ)ψΔ
J (0) =

2∑
k=1

Ak

⎛⎝−6 v(0) +
∑

ξJ∈Sk

v(ξJ)

⎞⎠ .(4.36)
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In the case when p = 1, we can only set δ2 = 0.
Summarizing the above discussion, on the set of Type II at xI , we have the

following lemma similar to Lemma 1.
Lemma 2. Let (Ω,Λ, ρx) be a proper triple and Λ(xI) ⊂ Λ be the set of Type II

at the node xI . Then we have the following properties:
1. The following representation formula for the strong meshfree Laplacian opera-

tor holds:

∑
xJ∈Λ(xI)

v(xJ)ψΔ
J (xI) =

1

h2

p∑
K=1

AK

⎛⎝−6 v(xI) +
∑

ξJ∈SK

v(ξJ)

⎞⎠(4.37)

for some coefficients AK which depend on the window function.
2. If the coefficients AK are positive, then the following inverse inequality for the

Laplacian shape functions holds:∑
xJ∈Λ(xI)

∣∣ψΔ
J (xI)

∣∣ ≤ 8

h2
.(4.38)

Proof. The proof is similar to that in Lemma 1, so we omit the proof.
Remark 3. The set of Type I and Type II belong to the locally (p, 4)-layered and

locally (p, 6)-layered class, respectively. The significant feature of the set of Type I
and Type II nodes is the staggered distribution of nodes across layers. Particularly,
in the case of Type I, it is essential for the invertibility of the moment matrix at the
center node since the matrix (4.11) derived from the nodes in each layer is singular
with kernel dimension 1. However, in the case of Type II, the nodes do not have
to be staggered through layers since one can see the nonsingular matrix (4.12) is
independent of the attitude of nodes in each layer. Hence, Type II is more natural
than Type I in the meshfree approximation.

4.3. Two possibly layered node distributions on specific domains. We
propose two kinds of evenly spaced nodes on some domains. The size, the rotation,
and the translation of the domain we are to construct are not critical in the subsequent
analysis (i.e., the subsequent analysis is independent of the similarity transfromation).

As shown in Figure 4.3(a), we first consider the open square domain ΩR with 4
vertices at

(1, 1), (−1, 1), (−1,−1), (1,−1).(4.39)

In this case, the nodes can be distributed on ΩR to be Type I (i.e., staggered locally
(p, 4)-layered (p = 2, 3)) at each interior node. The set of such nodes on ΩR is written
by the symbol ΛR.

As depicted in Figure 4.3(b), the hexagonal domain ΩH with the six vertices
located at

(1, 0),

(
1

2
,

√
3

2

)
,

(
−1

2
,

√
3

2

)
, (−1, 0),

(
−1

2
, −

√
3

2

)
,

(
1

2
, −

√
3

2

)
(4.40)

is taken as the second open domain. On the domain ΩH , the nodes can be entirely
distributed to be Type II (i.e., locally (p, 6)-layered (p = 1, 2)) at each interior node.
Such a set of nodes is denoted by ΛH .
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Fig. 4.3. Possibly layered node distribution: (a) ΩR, and (b) ΩH .

In both cases, the minimum node distance is set by h ≡ 2
n where n is regarded

as the number of divisions. Now, we determine the dilation function ρx for each case.
We only need the values of ρx at nodes. First of all, we notice that the value ρxI

at
each node xI on ΛR (or ΛH) depends on how we take the p number in the locally
(p, q)-layered set Λ(xI) at xI . As illustrated in Figure 4.3(a) and (b), we choose them
in the following way:

ρRxI
=

{
h

√
2+2
2 , xI /∈ ∂ΩR, dist(xI , ∂ΩR) < 3

2h

h ((3 − p)
√

2+2
2 + (p− 2) 2+

√
5

2 ), xI /∈ ∂ΩR, dist(xI , ∂ΩR) ≥ 3
2h

,(4.41)

ρHxI
=

{
h 1+

√
3

2 , xI /∈ ∂ΩH , dist(xI , ∂ΩH) < 3
2h

h ((2 − p) 1+
√

3
2 + (p− 1)

√
3+3
2 ), xI /∈ ∂ΩH , dist(xI , ∂ΩH) ≥ 3

2h
(4.42)

in which dist(xI , B) ≡ miny∈B ‖xI − y‖ represents the distance between xI and the
closed set B as usual and p = 2, 3 and p = 1, 2, respectively, in (4.41) and (4.42).
The dilation function values on the interior nodes, taken by (4.41) and (4.42), make
the node sets ΛR and ΛH be the possibly layered. Furthermore, every ΛρxI

(xI) for
interior node xI becomes the set of Type I or Type II at xI .

On the boundary nodes for both cases, the dilation function values can be assigned
arbitrarily but they must be large enough to ensure the inverse of the moment matrices
at the nodes themselves. Actually, the dilation function values on the boundary nodes
do not affect the subsequent theorems for the convergence proof.

From the construction of two triples, namely, (ΩR,ΛR, ρ
R
x ) and (ΩH ,ΛH , ρHx ),

we can see that both ΛR and ΛH are the possibly layered and hence the two triples
become the proper triples attributed to (4.24) and (4.36). Although we could not say
how many possibly layered node distributions exist, we find at least two types of the
possibly layered set of nodes.

4.4. Discrete maximum principle on the set of Type I or Type II. For
these locally (p, q)-layered nodes of Type I and Type II, we should pay attention to
the discretized form (4.24) and (4.36). If the window function is suitably chosen so
that all the coefficients Ak may be strictly positive, then we can prove the discrete
maximum principle at the center node.

Lemma 3. Let (Ω,Λ, ρx) be the triple. If the local node set Λ(xI) ⊂ Λ is of either
Type I or Type II at xI , then the strong meshfree Laplacian operator Δρ satisfies the
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discrete maximum principle at the center node xI .
Proof. Let xI ∈ Λ be the center node of Λ(xI) that is either Type I or Type II at

xI . Then the set Λ(xI) is obviously the locally (p, q)-layered where p = 2, 3 for q = 4
or p = 1, 2 for q = 6. The discrete Laplacian shape functions have been calculated in
(4.24) and (4.36) for both cases. First, we will show that all the coefficients AK of the
representation formula in Lemmas 1 and 2 are strictly positive. In the case of Type I
which is the (p, 4)-layered, we claim that, when p = 3,

1 − 4 δ2 − 12 δ3 > 0, 1 + 2 δ1 − 4 δ3 > 0, 1 + 3 δ1 + 2 δ2 > 0(4.43)

and, when p = 2,

1 − 4 δ2 > 0, 1 + 2 δ1 > 0.(4.44)

If δ2 < 1
16 and δ3 < 1

36 , then all the left terms in (4.43) stay positive. Indeed, when

p = 3, from (4.17) we have δ2 = W ( 2
√

2
2+

√
5
) < 1

16 and δ3 = W ( 4
2+

√
5
) < 1

36 . In the

other case when p = 2, it is true from (4.17) that δ2 = W ( 2
√

2
2+

√
2
) < 1

16 . Therefore, we

are done with the proof for the case of the locally (p, 4)-layered nodes (p = 2, 3).
On the other hand, when Λ(xI) is of Type II which is the locally (p, 6)-layered,

all the coefficients A1 and A2 of the representation formula in Lemma 2 are positive

since we know from (4.30) that δ2 = W ( 2
√

3
3+

√
3
) < 1

16 when p = 2. For the case when

Λ(xI) is the locally (1, 6)-layered at xI , we trivially have A1 > 0.
Let Λ(xI) be the set of Type I or Type II at xI ∈ Λ as mentioned in this

Lemma. To prove the discrete maximum principle, suppose (Δρ v)(xI) ≥ 0 for some
v ∈ V . Due to the window function of type (2.5), the coefficients Ai in Lemmas 1
or 2 are proved to be positive in the above. From the positivity of the coefficients
of the representation formula in both Lemmas 1 and 2, it never happens under this
assumption that the center nodal value vI of v at xI is strictly greater than all the
other nodal values vK at the node xK ∈ ΛρxI

(xI) and therefore we have

vI ≤ max
xK∈Λ(xI)\{xI}

vK .(4.45)

If the equality holds, then the event vI > vK for some xK ,K 
= I makes (Δρ v)(xI) <
0. Hence, all vK ’s must be equal to vI . Therefore, the operator Δρ satisfies the
discrete maximum principle at the node xI and this completes the proof.

4.5. A priori estimate for the strong meshfree Laplacian operator. For
the set of nodes on which the discrete maximum principle holds, we can obtain the
general results in the meshfree regime.

Lemma 4. Let (Ω,Λ, ρx) be a proper triple. Assume the operator Δρ satisfies the
discrete maximum principle on a finite subset A ⊂ Λ. Then we have the following
inequality:

max
xJ∈A

vJ ≤ max
xK∈A∗\A

vK(4.46)

whenever v ∈ V and Δρv ≥ 0 on A.
Proof. Let us assume v ∈ V and Δρv ≥ 0 on A. Suppose the maximum of nodal

values over A occurs at the node xK∗ ∈ A; that is,

vK∗ = max
xJ∈A

vJ .(4.47)
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Then only two cases are possible. The first case is when Λ(xK∗)\A 
= ∅. In this
case, from the maximum principle we have nothing to prove. In the other case, we
have Λ(xK∗) ⊂ A. For this case, all vK ’s in Λ(xK∗) are the same as vK∗ . If we set
A0 ≡ Λ(xK∗), then we can construct the set A1 ≡ A∗

0 strictly larger that A0 (i.e., A1

contains at least one node not in A0). If A1\A 
= ∅, then this lemma is proved. If not,
all coefficients vK in A1 must have the same value vK∗ . Continuing this process, we
can construct A2 = A∗

1, A3 = A∗
2, . . . . However, this process has to stop in a number

of finite steps since the number of nodes in A is finite. Therefore, we have proven this
lemma.

Theorem 1 (a priori estimate for the strong meshfree Laplacian operator). Let
(Ω,Λ, ρx) be a proper triple. Assume the strong meshfree Laplacian operator Δρ sat-
isfies the discrete maximum principle on a finite subset A ⊂ Λ. Then, we have the
following a priori estimate

‖v‖∞,A ≤ C(A) ‖Δρv‖∞,A + ‖v‖∞,A∗\A whenever v ∈ V,(4.48)

where C(A) = minx∗ maxxL∈A∗\A
1
4‖xL − x∗‖2.

Proof. Let v ∈ V be assumed to be the nodal function on Λ. Then from the
definition of the strong meshfree Laplacian Δρ, we have

(Δρv)(xK) =
∑
xJ∈Λ

vJ ψΔ
J (xK), xK ∈ A.(4.49)

Obviously we see that

−‖Δρv‖∞,A ≤ (Δρv)(xK) ≤ ‖Δρv‖∞,A for any xK ∈ A.(4.50)

Owing to the reproducing property for polynomials up to second order, we have, for
any xK ∈ A,

Δρ

(
‖Δρv‖∞,A i

(
1

4
‖x − x∗‖2

))
=

∑
xJ∈Λ

(
‖Δρv‖∞,A

1

4
‖xJ − x∗‖2

)
ψΔ
J (x)(4.51)

= ‖Δρv‖∞,A,(4.52)

where x∗ is an arbitrary point. The first equality (4.51) comes from the definition
of the operator Δρ on V . The last identity (4.52) enables us to derive the following
inequalities due to (4.50). For any xK ∈ A,∑

xJ∈Λ

[
vJ +

(
‖Δρv‖∞,A

1

4
‖xJ − x∗‖2

)]
ψΔ
J (xK) ≥ 0,(4.53)

∑
xJ∈Λ

[
−vJ +

(
‖Δρv‖∞,A

1

4
‖xJ − x∗‖2

)]
ψΔ
J (xK) ≥ 0.(4.54)

From the discrete maximum principle (4.46) in Lemma 4 and both inequalities (4.53)
and (4.54), we can conclude that

vK ≤ max
xL∈A∗\A

(
vL +

(
‖Δρv‖∞,A

1

4
‖xL − x∗‖2

))
,(4.55)

−vK ≤ max
xL∈A∗\A

(
−vL +

(
‖Δρv‖∞,A

1

4
‖xL − x∗‖2

))
(4.56)
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for all xK ∈ A. Therefore, the following estimate holds:

|vK | ≤ max
xL∈A∗\A

|vL| + max
xL∈A∗\A

(
‖Δρv‖∞,A

1

4
‖xL − x∗‖2

)
.(4.57)

This completes the proof.

5. Error estimate for Poisson problem on specific domains ΩR and ΩH .
From here, we will achieve the convergence of the numerical solutions using the mesh-
free point collocation approach (DP) in (3.1) for the Poisson equation with Dirichlet
data on two specific domains—ΩR and ΩH . Through the convergence proof, we can
also understand the basic phenomena on the strong meshfree Laplacian operator and
can view the structure of the meshfree approximations.

For the numerical solution of the problem (DP), the meshfree point collocation
scheme is proposed in the manner of (3.9). The existence and uniqueness of the
numerical solutions of (DP) follows immediately from the a priori estimate in Theo-
rem 1.

Theorem 2 (existence and uniqueness). Assume that (Ω,Λ, ρx) is either (ΩR,ΛR,
ρRx ) or (ΩH ,ΛH , ρHx ). Then there exists the unique solution of the problem (DP) on
V .

Proof. Let us introduce the linear mapping Δ̂ρ : V → V defined by

(Δ̂ρ v)(xK) ≡
{

(Δρ v)(xK), xK ∈ Λo

vK , xK ∈ Λb
for all v ∈ V,(5.1)

where Λo ≡ Λ∩Ω and Λb ≡ Λ \Λo. Then our discrete problem (DP) is equivalent to
the following:

find v ∈ V such that Δ̂ρ v =

{
i(f) on Λo

g on Λb
.(5.2)

Since Λ is the possibly layered, the discrete maximum principle holds on Λo. Applying
the a priori estimate in Theorem 1 to the problem (5.2), we have

‖v‖∞,Λ∩Ω ≤ C ‖i(f)‖∞,Λ∩Ω + ‖g‖∞,Λ∩∂Ω.(5.3)

We claim that the linear mapping Δ̂ρ is one-to-one and onto. It suffices to show
that the mapping is one-to-one since solution space V has finite dimension.

Suppose Δ̂ρ v = 0. This means that f and g become zero on the right-hand side
of (5.3). Consequently, we have ‖v‖∞,Λ∩Ω = 0 and hence v = 0 on Λ∩Ω. This implies

v = 0 on Λ since g = 0 on Λ ∩ ∂Ω. Therefore, the mapping Δ̂ρ is injective. From the
fact that Im Δ̂ρ = (Ker Δ̂ρ)⊥ = V , we also are done with the surjective proof.

Furthermore, the following error estimate of the unique nodal solution of the prob-
lem (DP) holds on two specific domains ΩR and ΩH under the regularity assumption
of the continuous problem (CP).

Theorem 3. Let (Ω,Λ, ρx) be either the triple (ΩR,ΛR, ρ
R
x ) or (ΩH ,ΛH , ρHx ).

Assume u ∈ C0(Ω) ∩ Cs, α(Ω) (s = 3, 4) is the classical solution of Poisson problem
(CP) with Dirichlet data and uh ∈ V is the nodal solution of the discrete Poisson
problem (DP) on the node set Λ corresponding to Ω. If Λ∩Ω is the interior nodes of
Λ, then we have the following error estimate:

‖i(u) − uh‖∞,Λ∩Ω ≤ K hs−2 ‖u‖Cs,α(Ω)(5.4)
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for some constant K > 0 independent of h.
Proof. We note that the set of nodes Λ ≡ ΛR (or ΛH) of the proper triple

(ΩR,ΛR, ρ
R
x ) (or (ΩH ,ΛH , ρHx )) is obviously the possibly layered from the construc-

tion. Thus we can calculate the operator Δρ at every interior node xI ∈ Λ ∩ Ω. Let
Λo ≡ Λ ∩ Ω be the interior nodes of Λ. If uh ∈ V is the nodal solution of (DP) and
u ∈ C0(Ω) ∩ Cs, α(Ω) (s = 3, 4) is the solution of (CP), then we can derive the error
equation on Λo such that

(Δρuh)(xI) − Δu(xI) = 0 for all xI ∈ Λo.(5.5)

From the error equation (5.5), we can obtain∑
xJ∈Λ

(uh
J − u(xJ))ψΔ

J (xI) = Δu(xI) −
∑
xJ∈Λ

u(xJ)ψΔ
J (xI)(5.6)

for all xI ∈ Λo. Since the domain Ω is convex, we can obtain the following Taylor
expansions for u(x) at xI ∈ Λo. For every xJ ∈ Λ(xI),

u(xJ) =
∑

|β|≤s−1

1

β!
(xJ − xI)

βDβu(xI)

+
∑
|β|=s

1

β!

∫ 1

0

(1 − τ)s−1Dβu(xI + τ(xJ − xI)) dτ(xJ − xI)
β .(5.7)

Since Λ(xI) is the locally (p, q)-layered (q = 4, 6) at xI ∈ Λo, we can observe the
symmetric node structure such that −(xJ − xI) and xJ − xI are on the same layer
for all xJ ∈ Λ(xI). This implies that, when |β| = 3,∑

xJ∈Λ

(xJ − xI)
β ψΔ

J (xI) = 0.(5.8)

Thus, inserting the expansions (5.7) into the right-hand side of (5.6), the following is
obtained from the second order reproducing property and the symmetric factor (5.8):∑

xJ∈Λ

(uh
J − u(xJ))ψΔ

J (xI) =
∑
xJ∈Λ

cIJψ
Δ
J (xI) for all xI ∈ Λo,(5.9)

where the coefficients cIJ are defined as

cIJ = −
∑
|β|=s

1

β!

∫ 1

0

(1 − τ)s−1Dβu(xI + τ(xJ − xI)) dτ(xJ − xI)
β .(5.10)

Since the left-hand side of (5.9) is the image of the strong meshfree Laplacian operator
Δρ of uh − i(u) ∈ V , the a priori estimate (4.48) due to the maximum principle on
Λo leads to the following estimate

max
xJ∈Λo

|uh
J − u(xJ)| ≤ C(Λo) max

xI∈Λo

∑
xJ∈Λ(xI)

|cIJ |
∣∣ψΔ

J (xI)
∣∣ + max

xJ∈Λo∗\Λo
|uh

J − u(xJ)|.
(5.11)

In the case of the node distributions assumed, we know that Λb = Λo∗\Λo and uh
J −

u(xJ) = 0 on Λb because of the Dirichlet boundary conditions and hence the second
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term on the right-hand side of the inequality (5.11) vanishes. For the estimate of the
first term on the right-hand side of the inequality (5.11), we need the estimate of |cIJ |
for all xJ ∈ Λ(xI) as follows. For each xI ∈ Λo,

|cIJ | ≤
(

max
|β|=s

sup
x∈Ω

|Dβu(x)|
) (

max
xJ∈Λ(xI)

|xJ − xI |
)s

1

s

∑
|β|=s

1

β!
(5.12)

≤ Ks ‖u‖Cs, α ‖i(ρ)‖s∞,Λ(xI),(5.13)

where Ks = 1
s

∑
|β|=s

1
β! and ρ is the dilation function. Therefore, we have the

following error bound

max
xJ∈Λo

|uh
J − u(xJ)| ≤ Ks C(Λo) ‖i(ρ)‖s∞,Λo ‖u‖Cs, α max

xI∈Λo

∑
xJ∈Λ(xI)

∣∣ψΔ
J (xI)

∣∣ .(5.14)

On the other hand, the constant C(Λo) is bounded by the diameter of the domain Ω,
and the dilation function ρ in the assumed triple (Ω,Λ, ρx) satisfies

h < ‖i(ρ)‖∞,Λo < C h(5.15)

for some constant C independent of h. Furthermore, from Lemmas 1 and 2,∑
xJ∈Λ(xI)

∣∣ψΔ
J (xI)

∣∣ ≤ 8

h2
.(5.16)

Consequently, we obtain the error estimate derived from (5.14):

‖i(u) − uh‖∞,Λ∩Ω ≤ K hs−2 ‖u‖Cs,α(Ω)(5.17)

for some K > 0 independent of h.
Remark 4. As seen in the proof of Theorem 3, the convergence order of the

numerical solution to the exact one can be proven only to be 2, although the regularity
index s of the solution becomes greater than 4. The higher order of basis polynomials
in the fast version of the generalized moving least square meshfree approximation is
directly related to a lift in the convergence order (see [8]). Its proof seems to need
the boundary error estimate for the numerical solution without the discrete maximum
principle, while the interior error estimate is the same as ours.

The error ratio of about 4 in Table 5.1 implies the second order convergence even
for the less-regularity case. The numerical result not only attests the validation of
the error estimate but also shows the numerical scheme proposed could be more accu-
rate than we anticipated. A numerical example is proposed to verify the theoretical
convergence result. The solution u(x, y) is assumed to be defined on both domains
(ΩR,ΛR, ρ

R
x ) and (ΩH ,ΛH , ρHx ) as follows:

u(x, y) = ex+y−1

∣∣∣∣x− 1

2

∣∣∣∣ (x− 1

2

)2

.(5.18)

Applying the Laplacian operator to this solution, the corresponding force is given as
follows:

f(x, y) = 2

∣∣∣∣x− 1

2

∣∣∣∣ ex+y−1

(
x2 + 2x +

7

4

)
.(5.19)
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Table 5.1

Numerically experimental result on the relative error (‖uh − i(u)‖Λ,∞/‖i(u)‖Λ,∞) and the con-
vergence rate of the numerical solutions for (ΩR,ΛR, ρRx ) and (ΩH ,ΛH , ρHx ), where Λ is either ΛR

or ΛH , and ρR and ρH are taken as the value 1.8 ∗ h at each interior node so that ΛR and ΛH can
be locally (2, 4)-layered and locally (1, 6)-layered, respectively.

h (ΩR,ΛR, ρRx ) Error ratio h (ΩH ,ΛH , ρHx ) Error ratio
2
20

4.2660 × 10−3 — 2
10

1.1900 × 10−2 —
2
40

1.0726 × 10−3 3.98 2
20

2.9148 × 10−3 4.08
2
80

2.6857 × 10−4 4.00 2
40

7.1881 × 10−4 4.06
2

160
6.7162 × 10−5 4.00 2

80
1.7833 × 10−4 4.03

x J

Ix

Λo

ΩR

x J

Ixinside node

non−inside node

Ω

Fig. 5.1. The immersed domain Ω in ΩR.

In this case, Dirichlet boundary condition on either ∂ΩR or ∂ΩH is presumed from
the exact solution u(x, y). The function u, in fact, belongs to C2,1-class of functions
on considered domains whose regularity is weaker than that stated in Theorem 3;
nevertheless, the numerical example produces the second order convergence result as
seen in Table 5.1.

6. Error estimate in the general domain immersed in ΩR or ΩH . We
will try to analyze the convergence of our discrete problem (DP) with the boundary
condition zero on a domain Ω which is immersed in the larger domain, for example,
Ω ⊂ Ω̂R (or Ω ⊂ Ω̂H) where Ω̂R (or Ω̂H) is the image domain transformed from ΩR

(or ΩH) by the similarity map. For brevity, we will rename it by ΩR (or ΩH).

Let Λ ≡ ΛR be the set of nodes in the triple (ΩR, ΛR, ρRx ). Assume that the nodal
solution space V in this case is defined on Λ. As shown in Figure 5.1, we separate the
set of nodes into two parts—the set Λo of inside nodes and the set Λb of non-inside
nodes which are defined as the following:

Λo ≡ {xJ ∈ Λ |Λ(xJ) ⊂ Ω}, Λb ≡ Λ \ Λo.(6.1)

The inside node xI ∈ Λ implies that the ρxI
-neighbor nodes are contained in the open

set Ω while the nonside node is anything else. The following is the immersed meshfree
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Poisson problem:

(IMP)

{
uh ∈ V0 ≡ {vJ ∈ R | vK = 0 for all xK ∈ Λb} ⊂ V

Δρuh = i(f) on Λo
.(6.2)

Let the solution u of the Poisson problem (CP) with zero Dirichlet data belong to
C0(Ω)∩C3, α(Ω) and uh ∈ V0 be the nodal solution of the immersed meshfree Poisson
problem (IMP). If we extend u to ΩR \ Ω by zero, then we conjecture that

‖i(u) − uh‖∞,Λ∩Ω ≤ K h ‖u‖C3,α(Ω),(6.3)

where the constant K is independent of h.
Theorem 4 (existence and uniqueness). Let (ΩR,ΛR, ρ

R
x ) and (ΩH ,ΛH , ρHx ) be

the triples. Assume Ω is immersed in either ΩR or ΩH . Then there exists the unique
solution of the problem (IMP) on V .

The proof of the theorem is similar to that of Theorem 2 and thus it is omitted.
In order to prove the convergence result (6.3) for the immersed meshfree Poisson

problem (IMP), let (ΩR,ΛR, ρ
R
x ) be the triple defined in section 5. First, we have

the following error:

‖i(u) − uh‖∞,Λo ∗\Λo = ‖i(u)‖∞,Λo ∗\Λo(6.4)

since Λo ∗ \Λo ⊂ Ω and uh(xJ) = 0 on it. Through the similar procedure to the proof
of Theorem 3 and from the fact that Λ(xI) ⊂ Ω for any xI ∈ Λo, we can obtain the
following error equation:∑

xJ∈Λ

(uh
J − u(xJ))ψΔ

J (xI) =
∑
xJ∈Λ

cIJψ
Δ
J (xI) for all xI ∈ Λo,(6.5)

where the coefficients cIJ are calculated as follows:

cIJ = −
∑
|β|=3

1

β!

∫ 1

0

(1 − τ)2Dβu(xI + τ(xJ − xI)) dτ(xJ − xI)
β .(6.6)

From a priori estimate in Theorem 1 due to the discrete maximum principle on Λo

and from the identity (6.4), we obtain the following estimates:

‖i(u) − uh‖∞,Λo ≤ C(Λo) max
xI∈Λo

∣∣∣∣∣ ∑
xJ∈Λ

cIJψ
Δ
J (xI)

∣∣∣∣∣ + ‖i(u) − uh‖∞,Λo ∗\Λo

≤ K1 h ‖u‖C3,α(Ω) + ‖i(u)‖∞,Λo ∗\Λo(6.7)

for some constant K1 > 0 independent of h. On the other hand, let us pay attention
to the fact that

‖i(u) − uh‖∞,Λb∩Ω = ‖i(u)‖∞,Λb∩Ω.(6.8)

Then, from this fact and (6.7), the nodal error on the nodes in Ω is bounded by

‖i(u) − uh‖∞,Λ∩Ω ≤ K1 h ‖u‖C3,α(Ω) + ‖i(u)‖∞,Λb∩Ω(6.9)
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since Λo ∗ \ Λo ⊂ Λb ∩ Ω. Here, the second term on the right-hand side of (6.9) is
bounded by

‖i(u)‖∞,Λb∩Ω ≤
(

max
xK∈Λb∩Ω

dist(xK , ∂Ω)

)
‖u‖C1,α(Ω) ≤ K2 h ‖u‖C3,α(Ω)(6.10)

for some constant K2 > 0 independent of h. Therefore, we have obtained the following
theorem.

Theorem 5. Let Ω ⊂ R
2 be an open bounded domain which is immersed in either

ΩR or ΩH . Assume that u ∈ C0(Ω)∩C3,α(Ω) is the solution of (CP) and uh ∈ V0 is
the nodal solution of (IMP). Then we have the following error estimate:

‖i(u) − uh‖∞,Λ∩Ω ≤ K h ‖u‖C3,α(Ω),(6.11)

where the node set Λ is either ΛR or ΛH and K is constant independent of h.

7. Conclusion. The generalized moving least square approximation is intro-
duced, and based on this, we can define the strong meshfree Laplacian operator in
the sense of a point collocation strategy. From the mathematical point of view, the
discrete maximum principle for the strong meshfree Laplacian operator is presented
for several types of layered node distributions. Using this principle, we perform con-
vergence analysis for the nodal solutions of the Poisson problem with Dirichlet data
on the boundary. As a result, second order convergence is achieved on the specific
nodes in two typical domains, while the generally shaped domain immersed in these
domains produces first order convergence of the nodal solution. An a priori estimate
for the strong Laplacian operator in the meshfree regime is newly obtained via the
discrete maximum principle and it is located in the core of the convergence proof
together with the point collocation scheme proposed in this paper.

Appendix I: Generalized moving least square reproducing operators.
For a given window function W (x) and a dilation function ρx, we find the vector a
to minimize the following weighted square functional at x̄ ∈ Ω:

J(a; x̄, u) ≡
∑
xI∈Λ

|u(xI) − Uρx̄
m (xI ; x̄,a)|2 W

(
xI − x̄

ρx̄

)
,(7.1)

where u(x) is a continuous function defined in Ω and Uρx̄
m (x; x̄,a) ≡ Bm(x−x̄

ρx̄
) · a.

Then the minimizer a should be a function of x̄ and u, and we can make the following
approximation operators for u by limiting process

Dβk
m,ρx

u(x) ≡ lim
x̄→x

Dβk
x Uρx̄

m (x; x̄,a(x̄, u)), |βk| ≤ m.(7.2)

As a matter of fact, the operators Dβk
m,ρx

are linear in u(x). We call the operator

Dβ
m,ρx

(|β| ≤ m) the βth meshfree approximated derivative operator equipped with
ρx.

Suppose {uI(x) |uI(xJ) = δIJ , xI ,xJ ∈ Λ} is a set of continuous functions. We
define the following functions:

ψ
ρx,[βk]
I (x) ≡ Dβk

m,ρx
uI(x).(7.3)
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Then the functions ψ
ρx,[βk]
I (x) can be characterized as follows:⎛⎜⎜⎜⎜⎝

ρx
|β1| ψ

ρx,[β1]
I (x)

ρx
|β2| ψ

ρx,[β2]
I (x)
...

ρx
|βL| ψ

ρx,[βL]
I (x)

⎞⎟⎟⎟⎟⎠ = JBm
(0)Mρx(x)

−1
Bm

(
xI − x

ρx

)
W

(
xI − x

ρx

)
,(7.4)

where Mρx(x) is called the moment matrix and is defined such that

Mρx(x) ≡
∑
xI∈Λ

Bm

(
xI − x

ρx

)
BT

m

(
xI − x

ρx

)
W

(
xI − x

ρx

)
.(7.5)

We call the function ψ
ρx,[β]
I (x) the βth shape function associated with the window

function W and the dilation function ρx, or briefly call it the βth shape function if no
confusion arises. As a consequence of (7.3), the operator Dβk

m,ρx
defined by (7.2) can

be rewritten as follows:

Dβ
m,ρx

u(x) =
∑
xJ∈Λ

u(xJ)ψ
ρx,[β]
J (x), |β| ≤ m.(7.6)

We also call this operator the βth meshfree approximated derivative operator and the
following properties of this operator can be justified.

Theorem 6 (generalized mth order consistency). We have the following identi-
ties: ∑

xI∈Λ

bα

(
xI − x

ρx

)
ψ
ρx,[β]
I (x) =

1

ρx
|β|

∂β

∂xβ
bα(0).(7.7)

Proof. To the matrix equation (7.4) for the βth shape functions, multiplying
Bm (xI − x/ρx) to the right on both sides and summing it over the whole nodes xI ,
we obtain the matrix equation. If we rewrite it in element-wise manner, then we have
the resultant (7.7).

The above theorem does not promise the βth meshfree approximated derivative
operator to reproduce automatically all of the derivatives for the basis functions.
However, for some useful class of functions including the polynomial class up to order
m, we can have the generalized reproducing property which will play an important
role in the convergence of approximations. For the class of the given basis functions
to have such a generalized reproducing property, it is sufficient to satisfy the following
condition.

Corollary 1 (sufficient condition for the generalized reproducing property).
Under the constant dilation function such that ρx ≡ ρ, we assume that the basis
functions satisfy the following relationships:

bβ

(
y

ρ

)
=

∑
|γ|≤m

cγ β

(
x

ρ

)
bγ

(
y − x

ρ

)
, |β| ≤ m(7.8)

and the coefficient matrix is calculated from the equation[
cαβ

(
x

ρ

)]
≡ C

(
x

ρ

)
= JBm(0)−1 JBm

(
x

ρ

)
,(7.9)
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where JBm

(
x
ρ

)
is the Jacobian matrix defined as

JBm

(
x

ρ

)
≡

[
(Dαbβ)

(
x

ρ

)]
.(7.10)

Then the basis functions scaled by ρ are exactly reproduced by the meshfree approxi-
mated derivative operators, i.e.,

Dβ
m,ρx

bβ

(
x

ρ

)
= Dβ

x bβ

(
x

ρ

)
, |β| ≤ m.(7.11)

Proof. Assume that bα(x)’s for |α| ≤ m are the basis functions satisfying both
conditions of (7.8) and (7.9). If we directly enforce (7.7) on these basis functions,
then we obtain the result of (7.11).

Corollary 1 provides us the opportunity of taking the general basis functions
which can be reproduced in a dilated form. It is worth noting that the reproducing
property does not happen in general if we take an arbitrary set of basis functions.
That is why we propose the sufficient condition to ensure the reproducing condition
for the dilated basis functions. According to the sufficient condition of (7.8) and (7.9)
for the reproducing of basis functions, the class of polynomial basis up to order m can
be shown to satisfy the exact reproducing property. That is, all of the derivatives of
the basis itself are reproducible even in the case when involving the dilation function.

Corollary 2. If we take the polynomials up to order m as basis functions, then
the βth meshfree approximated derivative operator Dβ

m,ρx
is exactly the same as the

differential operator Dβ on the polynomial space up to order m. That is,

Dβ
m,ρx

u(x) = Dβ
x u(x)(7.12)

whenever u(x) is a polynomial of order up to m.

Proof. We can replace all ρx in Theorem 6 and all ρ in Corollary 1 with the
number 1 for the case of polynomial basis up to order m. This fact suffices to prove
this lemma.

This corollary can be understood by recognizing that the βth meshfree approx-
imated derivative operator Dβ

m,ρx
behaves in the same way as the exact derivative

operator Dβ
x at least on the polynomial function space up to order m.
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Appendix II: Trigonometric identities. Let θ be an angle fixed. Then we
have the following trigonometric identities for any natural number n ≥ 4:

n−1∑
k=0

cos

(
θ + k

2π

n

)
=

n−1∑
k=0

sin

(
θ + k

2π

n

)
=

n−1∑
k=0

cos

(
θ + k

2π

n

)
sin

(
θ + k

2π

n

)
= 0,

(7.13)

n−1∑
k=0

cos2
(
θ + k

2π

n

)
=

n−1∑
k=0

sin2

(
θ + k

2π

n

)
=

n

2
,

(7.14)

n−1∑
k=0

cos3
(
θ + k

2π

n

)
=

n−1∑
k=0

sin3

(
θ + k

2π

n

)
= 0,

(7.15)

n−1∑
k=0

cos2
(
θ + k

2π

n

)
sin

(
θ + k

2π

n

)
=

n−1∑
k=0

cos

(
θ + k

2π

n

)
sin2

(
θ + k

2π

n

)
= 0,

(7.16)

n−1∑
k=0

cos4
(
θ + k

2π

n

)
=

n−1∑
k=0

sin4

(
θ + k

2π

n

)
=

{
3
8n + 1

8n cos 4θ, n = 4

3
8n, n 
= 4

,

(7.17)

n−1∑
k=0

cos2
(
θ + k

2π

n

)
sin2

(
θ + k

2π

n

)
=

{
1
8n− 1

8n cos 4θ, n = 4

1
8n, n 
= 4

,

(7.18)

n−1∑
k=0

cos3
(
θ + k

2π

n

)
sin

(
θ + k

2π

n

)
=

{
1
8n sin 4θ, n = 4

0, n 
= 4
,(7.19)

n−1∑
k=0

cos

(
θ + k

2π

n

)
sin3

(
θ + k

2π

n

)
=

{
− 1

8n sin 4θ, n = 4

0, n 
= 4
.(7.20)
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