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A miniaturized electron beam column, microcolumn, operated at a low electron energy of 1–2 keV has been simulated by the
fast moving least square reproducing kernel point collocation method (FCM) which is a new concept of point collocation
calculations. The salient feature of the method here is the use of the dilation function instead of constant dilation parameter.
The simulation results of FCM for microcolumn configuration show good agreement with previous calculation and
experimental results. Typically, the electron beam column design has been simulated by the finite difference method (FDM)
with the grid and finite element method (FEM) based on mesh generation. However, The FCM method dilation function can
readily calculate high-aspect-ratio structures employing only nodes instead of grid or mesh generation. The accuracy of this
method will be proved through careful analysis of the error between numerical and analytic solutions. The full microcolumn
structure consisting of electron emitter, source lens, and Einzel lens parts can be readily calculated by FCM. We will discuss
the basic concept of FCM and its applications in this paper. [DOI: 10.1143/JJAP.42.3842]
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1. Introduction

The potentials and fields in the electrostatic and magnetic
lens system are usually computed by the first-order finite
element method (FEM) and/or finite difference method
(FED). In these methods, the mesh generation for the
problems of complicated geometries is not simple. From this
viewpoint, the meshfree method is appealing because it does
not require mesh generation. Since the pioneering work on
the meshfree method, smoothed particle hydrodynamics
(SPH),1) several meshfree methods such as the diffuse
element method (DEM),2) element free Galerkin method
(EFG),3) moving least square reproducing kernel method
(MLSRK),4) and meshless point collocation method5) have
been proposed. EFG has been widely used and its successful
implementations have been reported,6–8) although this
method uses background cells. Additionally, the coupling
of the point collocation method and meshfree method which
is called the meshfree point collocation method
(MPCM)5,9,10) has been investigated and it exibited relia-
bility. The applications of the meshfree method for electro-
magnetic field computation have been reported.11,12) Re-
cently, a new approximation method called the fast moving
least square reproducing kernel method (FMLSRK)13) has
been proposed. In this method, the values of shape functions
and the values of all its approximated derivatives are
calculated simultaneously. Based on these approximations,
we proposed point collocation schemes to solve the
numerical solutions of partial differential equations. The
details of the methodologies and numerical examples such as
Poisson and Stokes problems can be found in ref. 13. This
point collocation scheme using the FMLSRK method is fast
and convenient, since it neither calculates the derivatives
separately nor does it require mesh generation. Therefore,
we have tried to apply this method to some physical
problems, especially to the electrostatic microcolumn sys-

tem. However, in this case, the domain of the problem is
nearly singular and has multi-scales. For instance, there are
sharp edges of columns and an extremely small region
concerned with the electron emitter. In the previous paper,
such a situation has not been considered. Hence, we require
an improved point collocation scheme for concentrated
nodes in the small-scale region. This is why we adapt the
dilation function instead of constant dilation parameter. This
is not only the main emphasis point but also a distinct
contribution from the previous work.

The microcolumn system has been studied experimentally
and has attracted considerable interest because of its
potential applications as a miniaturized electron source and
its use in various types of equipment based on it.14,15) In this
work, we will discuss the basic concept of fast moving least
square reproducing kernel point collocation method (FCM)
and its applications to the microcolumn system as well as a
numerical analysis on the validity of this method.

2. Fast Moving Least Square Reproducing Kernel
Approximation

In this section, the brief summary of FMLSRK is
described for the understanding of this numerical method.
However, the intrinsic properties of the FMLSRK method in
the theorem at the end of this section are preserved although
the dilation parameter � below is replaced with a positive
continuous function �x. Thus we introduced the FMLSRK
methodology briefly.

Let � be a bounded domain in R
n and uðxÞ be a

continuous function defined in � � R
n. We also let � ¼

fxI 2 �jI ¼ 1; � � � ;NPg be a set of distributed nodes both in
� and on its boundary. Throughout this paper, multi-index
notations are employed. When � ¼ ð�1; � � � ; �nÞ is an n-tuple
of nonnegative integers and x ¼ ðx1; x2; � � � ; xnÞ 2 R

n, we
define
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j�j �
Xn
i¼1

�i;

�! � �1!�2! � � ��n!;

x� � x�11 x�22 � � � x�n
n ; ð2:1Þ

and write the �-th derivative of a smooth function as

D�
x � @�1

x1
@�2
x2
� � � @�nxn :

Now let us introduce the vector of complete basis
polynomials in R

n of the order less than or equal to m such
that

PmðxÞ ¼ ðx�1 ; x�2 ; � � � ; x�LÞT 2 R
ðnþmÞ!
n!m! ; ð2:2Þ

where �k’s are all multi-indices of n-tuples in lexicographi-
cal order. For example, if n ¼ 2 and m ¼ 2, then the multi-
indecies are arranged in the order of (0,0), (1,0), (0,1), (2,0),
(1,1) and (0,2), and thus PmðxÞ is ð1; x; y; x2; xy; y2ÞT . The
dimension of PmðxÞ is obviously ðnþ mÞ!=n!m!.

What we want to do first is to determine the best local
approximation of uðxÞ at �xx 2 ��� of the following form

Umðx; �xxÞ ¼ Pm

x� �xx

�

� �
� að �xxÞ ¼ PT

m

x� �xx

�

� �
að �xxÞ; ð2:3Þ

in the manner of minimizing the locally weighted square
functional

Jðað �xxÞÞ �
X
xI2�

juðxIÞ � UmðxI ; �xxÞj2�
xI � �xx

�

� �
; ð2:4Þ

where �ðyÞ is nonnegative and compactly supported
continuous function in R

n the so called window function.
The minimizing procedure yields the best local approxima-
tion of uðxÞ at �xx

Umðx; �xxÞ ¼ PT
m

x� �xx

�

� �

X
xI2�

M�1ð �xxÞPM

xI � �xx

�

� �
�

xI � �xx

�

� �
uðxIÞ;

ð2:5Þ

where Mð �xxÞ is the moment matrix defined by

Mð �xxÞ �
X
xI2�

Pm

xI � �xx

�

� �
PT

m

xI � �xx

�

� �
�

xI � �xx

�

� �
: ð2:6Þ

Based on the best local approximation Uðx; �xxÞ, the locally
approximated derivatives of uðxÞ are defined by

D�
xUmðx; �xxÞ ¼ D�PT

m

x� �xx

�

� �� �

X
xI2�

M�1ð �xxÞPm

xI � �xx

�

� �
�

xI � �xx

�

� �
uðxIÞ;

ð2:7Þ

where j�j � m. We arrive at the position where the global
approximations of all derivatives of uðxÞ are derived from
the local ones of eq. (2:7) simply by taking the limit as �xx
tends to x. Thus we define notations of the global
approximations of uðxÞ and obtain the identities

Dh;�
m uðxÞ � lim

�xx!x
D�

xUmðx; �xxÞ

¼
X
xI2�

�½��
I ðxÞuðxIÞ;

ð2:8Þ

where j�j � m and the functions �½��
I ðxÞ’s are defined as the

solution of the following matrix equation

MðxÞ

�j�1j

�1!
�

½�1�
I ðxÞ

�j�2j

�2!
�

½�2�
I ðxÞ

..

.

�j�Lj

�L!
�

½�L�
I ðxÞ

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

¼ Pm

xI � x

�

� �
�

xI � x

�

� �
; ð2:9Þ

where �k’s are multi-indices and j�kj � m and xI 2 �. We
call �½��

I ðxÞ the �-th shape function associated with the
window function �, or briefly call it the �-th shape function
if there is no confusion. Note that, �½0�

I ðxÞ’s are standard
shape functions of meshfree methods.

Theorem 2.1. (Properties of FMLSRK)

(1) (Generalized m-th order consistency) Suppose that
uðxÞ is a polynomial of the order less than or equal to
m. Then the interpolation operator Dh;�

m produces
D� uðxÞ, i.e.,

Dh;�
m uðxÞ ¼ D�uðxÞ ð2:10Þ

for any �, j�j � m.
(2) (Truncation error for approximated derivatives) As-

sume the window function �ðxÞ 2 C0
0ðR

nÞ and
vðxÞ 2 Cmþ1ð�Þ, where � is a bounded open set in
R

n. Let � be a node set on which any moment matrix
MðxÞ for x 2 ��� is assumed to be invertible for some
dilation parameter � > 0. Suppose the boundary of �
is smooth and supp �½0�

I \ ��� is convex for each I.
If m and p satisfy

m >
n

p
� 1; ð2:11Þ

then the following estimate holds

kD�v� Dh;�
m vkLpð�Þ � CðmÞ�mþ1�j�jkvkWmþ1;pð�Þ;

ð2:12Þ

for all �, j�j � m.

3. Point Collocation Scheme Based on FMLSRK Ap-
proximation

We will propose a point collocation scheme from a
general point of view. In order to obtain the meshfree
numerical solution of a partial differential equation, we first
interpolate the solution uðxÞ of the partial differential
equation such that

Dh;0
m u ¼

X
xI2�

uI�
½0�
I ðxÞ ð3:1Þ

where uI should be determined later from the governing
equations. Then the approximation theorem 1 allows us to
approximate the derivatives of uðxÞ in the partial differential
equations and on the boundary conditions such that

Dh;�
m u ¼

X
xI2�

uI�
½��
I ðxÞ ð3:2Þ
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for 0 < j�j � m. In the point collocation scheme, we
preferably use the following type of window function

�ðyÞ ¼ ð1� kykÞj; when kyk < 1; j > 0,

0; otherwise,

�
ð3:3Þ

which is not differentiable at x ¼ 0. We call j the power of
the window function. Usually, we take the case when j ¼ 4

for the second order partial differential equations.
In order to expose a point collocation scheme, we consider

the Poisson problem

��u¼ f ; in � ð3:4Þ

u¼ g; on �D ð3:5Þ
@u

@n
¼ h; on �N ð3:6Þ

where @� ¼ �D [ �N , �D \ �N ¼ �. We propose the point
collocation discretization of the above Poisson problem
using the approximations (3.13) and (3.14) as

UðxÞ ¼
X
xJ2�

uJ�
½ð0;0Þ�
J ðxÞ; ð3:7Þ

�
X
xJ2�

uJ �½ð2;0Þ�
J ðxiÞ þ�½ð0;2Þ�

J ðxiÞ
� �

¼ f ðxiÞ;

X
xJ2�

uI�
½ð0;0Þ�ðxdÞ ¼ gðxdÞ;

X
xJ2�

uJ �½ð1;0Þ�
J ðxnÞ;�½ð0;1Þ�

J ðxnÞ
� �

� nðxnÞ ¼ hðxnÞ; ð3:8Þ

xi 2 �i; xd 2 �d; xn 2 �n; ð3:9Þ

where � ¼ �i [�d [�n, and �i, �d and �n are sets of
interior nodes, Dirichlet boundary nodes and Neumann
boundary nodes, respectively. Here nðxnÞ is the outward unit
normal vector at xn 2 �n. In this case, the second order
approximated derivatives are needed. Thus, we choose the
order m of basis polynomial Pm greater than or equal to 2.

It is worth noting that the extension of the above method
using a positive dilation function is considerably natural.
The constant dilation parameter � can be replaced with the
continuous dilation function �x. Of course, in this case, all
shape functions depend on �x. It can be proved that it is
possible to introduce �x with the generalized m-th order
consistency condition preserved in FMLSRK approximation.
Unless the dilation function �x is differentiable, other
meshfree methods fail to calculate the derivatives of shape
functions. For the preconditioning, we propose an improved
scheme for concentrated nodes as

�
X
xJ2�

uJ�
2
xi �

½ð2;0Þ�
J ðxiÞ þ�½ð0;2Þ�

J ðxiÞ
� �

¼ �2xi f ðx
iÞ; ð3:10Þ

X
xJ2�

uI�
½ð0;0Þ�ðxdÞ ¼ gðxdÞ; ð3:11Þ

X
xJ2�

uJ�xn �½ð1;0Þ�
J ðxnÞ;�½ð0;1Þ�

J ðxnÞ
� �

� nðxnÞ ¼ �xnhðxnÞ; ð3:12Þ

xi 2 �i; xd 2 �d; xn 2 �n:

4. Numerical Simulations

As already described above, only the node configuration is
necessary for the whole domain considered in this computa-

tion method. Thus, we have defined the domain as the whole
area surrounded by the boundaries, either constant value
boundaries (Dirichlet boundary condition) or constant
derivative boundaries (Neumann boundary condition). The
nodes with proper inter-distances and suitable for the
geometry of each system were generated. In this work, all
computation processes were performed based on 2-dimen-
sional modelling as the concerned systems are cylindrically
symmetric.

In order to check the reliability of this computational
method, we have applied it to a sample system having an
analytical solution. We have considered the potential flow
problem in a 2-dimensional pipe with a barrier inside. The
flow region � has a serious singularity of interior angle 2�
as shown in Fig. 1 by solid lines

� ¼ ðx; yÞj �
1

2
< x <

1

2

� �
� Db ð4:1Þ

where Db ¼ f� 1
2
� x �; y ¼ 0g. In the real numerical

calculation, we restricted the infinite flow domain � to the
truncated domain �h such that �h ¼ � \ fðx; yÞjjyj < 3g.
The governing equation is the Poisson equation with 0
forcing term, i.e., the harmonic equation in the singular
domain.

�4u ¼ 0; in �h ð4:2Þ

uðx; yÞ ¼ Q, on x ¼ � 1
2

or � 1
2
< x � 0, y ¼ 0 and,

uðx; yÞ ¼ 0, on x ¼ 1
2
, where, Q is the potential value at the

boundary i.e., Dirichlet boundary condition. The exact
solution on � is

uðzÞ ¼ =
Q

�
log½2 sin�z� 1þ ið1� ð2 sin�z� 1Þ2Þ

1
2�; ð4:3Þ

z ¼ xþ iy

where the imaginary symbol = indicates the imaginary part
of the complex valued function and the logarithm has the
principal argument �� < � < �. In Fig. 1, the equi-poten-
tial lines obtained numerically are indicated by solid lines.
Hereafter, the analytic solution will be abbreviated as us and

-0.5 -0.25 0 0.25 0.5
-3

-2

-1

0

1

2

3

X

Y

Q

∂U / ∂y = 0

Fig. 1. Singular domain configuration of the potential flow in 2-dimen-

sional pipe with a barrier inside. The solid lines indicate the numerically

obtained solution with high density node set.
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the numerically obtained ones as Us

In the process of numerical calculation, the Dirichlet
boundary value was set to be Q ¼ 5. The physical situation
corresponding to this mathematical condition is that the
voltage applied to the left plate and the slit is 5V and the
right plate is grounded. Additionally, the assumed Neumann
boundary condition of @U=@y ¼ 0, is applied on y ¼ �3 as
we do not know the exact potential values and their
gradients. Though we can calculate these values in this
problem, they are not usually available at boundaries.
However, even in a real system, we can guess that the
gradient of the potential would be zero in the region far from
the slit, that is ð@u=@yÞj�1 ¼ 0.

Numerical calculation was performed using two different
sets of nodes.: (i) In the first set, the node number density is
relatively low and the distance between the neighboring
node points along the x- or y-direction was set to be �x ¼
0:002 and �y ¼ 0:006. (ii) In the second set, the node
number density was increased so that inter-node distance
was just half of that in the first set, �x ¼ 0:001 and
�y ¼ 0:003. Therefore, the total number of nodes in the
high density node set is four times as large as that in the low
density case. The feature of the numerical solution obtained
with a high density node set is presented in Fig. 1 by solid
lines. The difference between the analytic and numerical
solutions was obtained at each node point. The average value
of the relative error, i.e., D ¼ 1

n
�DðiÞ was 0.0005 and

0.0002 for low and high density nodes, respectively. Here, n
is the total number of nodes in each configuration and DðiÞ is
defined as DðiÞ ¼ jUsðiÞ � usðiÞj=jusðiÞj at i-th node point.
The value of D is thought to be sufficiently small for usual
numerical methods. Also, the L2-error is measured as

L2 � error � kus � Usk �
�jusðXIÞ � UsðXIÞj2

�jusðXIÞj2

� �1
2

ð4:4Þ

As expected, L2-error was reduced with the increase of the
node number; 0.0006 for low and 0.0003 for high density
node sets.

The sectional views of numerical solutions were com-
pared with analytic ones along several typical lines in the
domain. In Fig. 2(a), solid lines indicate the analytic solution
and discrete symbols indicate numerically estimated solu-
tions obtained with a low-density node set along the lines of
y ¼ constant; Circles, squares, up-triangles, and down-
triangles indicate numerically obtained values along y ¼ 0,
y ¼ 0:06, y ¼ 0:24, and y ¼ 2:52, respectively. These plots
suggest that numerically obtained solutions agree quite well
with the exact ones even in the case of a low-density node
set.

In order to illustrate the accuracy variation quantitatively,
we have plotted the sectional view of relative error, DðiÞ,
along the same lines as in Fig. 2(b). At the origin, the
relative error is around 0.022 which is much larger than
those in other regions, which are less than 0.01. When
numerical estimation is performed with a high-density node
set, the error is reduced uniformly and the comparison
between the errors in low and high density node sets is
shown in Fig. 2(c). Along the direction parallel to the y axis,
we have examined several typical lines such as x ¼ �0:4,
�0:06, 0.00, 0.06, and 0.3, and the resulting errors were less

than 0.004. The maximum error appears also at the origin.
These results can be summarized as follows; i) the error is
negligibly small in the region far from the singular structure
i.e., the origin. Even in the region near the origin, the
maximum relative error is less than 0.03. ii) The magnitude
of error decreases uniformly over the entire domain with the
increase of node density.

In this computation method, we do not differentiate the
shape functions to obtain their derivatives but independently
obtain them by treating the derivatives as another shape
function. This is the main difference between this method
and the conventional point collocation scheme, which makes
it compulsory to clarify the validity of this approach. Though
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Fig. 2. (a) Sectional views of the numerical and analytic solutions. The

solid line indicates the analytic solution and circles, squares, up-triangles,

and down-triangles indicate the numerically obtained solution along

y ¼ 0, 0.06, 0.24, and 2.52, respectively. (b) Sectional view of relative

error, DðiÞ, along the same lines. (c) Comparison of relative errors

obtained with low (solid symbols) and high (open symbols) density node

set.
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it is proved mathematically in ref. 13, we tried to check it by
plotting the field strengths, both �@Us=@x (X-field strength)
and �@Us=@y (Y-field strength), along the same lines traced
in Fig. 2.

Along the lines parallel to the x axis, �@Us=@y varies
gradually and does not show any abrupt behavior, which is
not shown here. In addition, the magnitude of the relative
error is less than 0.015 for the whole domain. Figure 3(a)
shows �@Us=@y along a few x ¼ constant lines, x ¼ �0:4,
�0:06, 0.00, 0.06, and 0.3. When x � 0, both �@Us=@y and
�@us=@y change abruptly when passing through y ¼ 0 due to
the slit (see the squares, circles, and up-triangles in the
figure). It changes gradually, when x > 0 (see the down-
triangles and diamonds in this figure). The solid lines
indicate analytically obtained values of �@us=@y. Figure 3(b)
shows the corresponding relative error between �@Us=@y
and �@us=@y. The magnitude of error is less than 0.006 in
most of the region, that is, �2 < y < 2, in this figure.
However, when y < �2:5 or y > 2:5, the relative error
increases rapidly and reaches 0.32 at y ¼ �3. This trend is
the same for all the lines considered though there are slight
differences near y ¼ 0 as shown in the insert. At a glance, a
relative error of 0.32 seems to be very large. However, it is
important to remember that this large error did not originate
from the methodology itself but from the boundary condi-
tion. For the convenience of numerical estimation, we have
assigned the Neumann boundary condition of �@U=@y ¼ 0

on y ¼ �3 instead of the exact analytic boundary condition
of �@u=@y ¼ 0 at y ¼ �1. Therefore, �@U=@y should

approach zero as y�!�3 even though the real value is not
zero. In other words, this large error did not originate from
the computation method itself but from the roughly guessed
boundary condition. We need to concentrate on the small
error in the region of �2 < y < 2. Even though the forced
error originating from the roughly taken boundary condition
is �0:3, the error decreases rapidly to sufficiently small
values, less than 0.006, as the node points recede from that
boundary. This means that it is sufficient to determine the
dimension of the whole domain several times larger than the
size of the slit for obtaining a reasonable numerical solution.

Figure 4(a) presents �@Us=@x along a few lines parallel to
the x-axis and (b) the corresponding relative error. In
addition, owing to the existence of a singular point, the end
of the slit, �@Us=@x shows an abrupt change at x ¼ 0 if one
follows y ¼ 0. Along other lines, it varies smoothly. In this
case, the relative error is also less than 0.001 except for the
value of 0.004 at the origin. Along the lines parallel to the y-
axis, �@Us=@x varies smoothly when x > 0. But when x � 0,
it shows a singular change in its derivative (2nd derivative of
potential) while satisfying the continuity of the tangential
components of the electric field. The magnitude of relative
error was proved to be less than 0.0006.

The error of �@Us=@x (maximum 0.001 except origin) is
much smaller than that of �@Us=@y (maximum 0.015 except
in the region near y ¼ �3.) This is thought to be natural as
the assigned Dirichlet boundary condition at the lines of
x ¼ �1=2 and x ¼ 1=2 is not the guessed value but just the
applied constant voltage. By the above assumptions, both the
shape functions and their derivatives obtained simultaneous-
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Fig. 3. (a) �@Us=@y along x ¼ �0:4, �0:06, 0.00, 0.06, and 0.3 lines.

Squares, circles, up-triangles, down triangles and diamonds indicate

numerically estimated values of �@Us=@y along x ¼ �0:4, �0:06, 0.00,

0.06, and 0.3 lines, respectively. Solid lines indicate analytic values. (b)

Relative error between �@Us=@y and �@us=@y.

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0

5

10

15

20

25

30(a)

 y=0.00
 y=0.06
 y=0.24
 y=2.52

X
-F

ie
ld

 S
tr

en
g

th

X Position

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0.000

0.001

0.002

0.003

0.004(b)

 y=0.00
 y=0.06
 y=0.24
 y=2.52

R
el

at
iv

e 
E

rr
o

r
(X

-F
ie

ld
)

X Position

Fig. 4. (a) This figure presents �@Us=@x along the lines parallel to x-axis.

The open circles, squares, up-triangles, and down-triangles represent

�@Us=@x’s along the lines of y ¼ 0:00, 0.06, 0.24, and 2,52. (b) Relative

errors between �@Us=@x and �@us=@x.
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ly by this method were proved to be acceptable as reasonable
substitutes for real values.

The schematic diagram of the microcolumn considered in
this work is shown in Fig. 5(a). In this diagram, the thickness
of all the micro-electrostatic lenses is 2 mm. Above the
electron emitter, the source lens system composed of three
micro-electrostatic lenses is located. The spacings between
the lenses are set to be 150 mm and the aperture diameter is
set to be 10, 100, and 10 mm, respectively from the bottom
and followed by the deflector denoted by crossed rectangles.
Finally, the Einzel lens system composed of three identical
micro-electrostatic lenses in which the spacings between the
lenses are set to be 250 mm and the aperture diameter is
200 mm is used and focuses the electron beam onto the
sample shown as a horizontal rectangle.

The total length of this column is around 4mm while the
thickness of the composing lens is usually 2 mm and the
radius of the circular aperture ranges from a few to 200 mm
and the emitter width is less than 1 mm. The aspect ratio, the
dimensional ratio between the largest and the smallest
structure, of this system is around 4000, which is regarded as
very large for the usual numerical calculation methods.
Therefore, in order to save computation time for numerical
estimation, gradual zooming is introduced. That is, the node
configuration was generated such that the inter-node distance
decreases by steps while approaching the fine structures such
as the emitter tip or the end of the lens to avoid a rapid
change of node distance which may result in an error during
numerical estimation. This situation is well expressed in Fig.
5(b) which shows the gradually zoomed node configuration
near the tip and lens.

Here, the concept of characteristic radius is introduced
during the computation process. Characteristic radius is
defined as the radius of the circular disk (or sphere in 3-
dimensional case) having a characteristic number of node

points centered at the concerned node point during the
computation. The estimated values at a certain node point,
whether they are shape functions or their derivatives, are
compared with those at the node points within that
characteristic volume element. Therefore, characteristic
radius varies according to node density. In this example,
the characteristic radius in the main domain was taken to be
less than 10 mm and those in the zoomed regions are reduced
by steps with the decrease of node distance. The strict
meaning of aspect ratio is the ratio of the longest
characteristic radius to the shortest one.

For the numerical calculation, we have assigned some
boundary conditions; between the cathode (the bottom plate
and emitter) and anode (the extractor lens) a constant
potential difference of 1,000 was assigned depending on the
electron energy. At the center electrode of Einzel lens,
decelerating or accelerating voltage was assigned according
to the operating mode. For the boundaries at the two vertical
sides, the boundary condition of zero electric field, that is,
@V=@n ¼ 0 was applied. In Fig. 5(c), we have shown typical
results such as estimated potential and electron beam
trajectory, in the region of source and Einzel lens. The
results of the other region are not displayed since electrons
do not undergo significant acceleration because of the
negligibly low potential and weak field.

For given values of parameters such as the dimension of
each component and the boundary condition, the character-
istics of the column including electrostatic potential inside
column, corresponding field and electron motion will be
determined. A typical example is shown in Fig. 6, the
operation of the Einzel lens system depending on the voltage
applied to the center electrode. Figure 6(a) shows the beam
motion when the Einzel lens is operating in accelerating
mode and Fig. 6(b) presents that in retarding mode. Similar
results can be found in ref. 16. In order to certify that this

Fig. 5. (a) Schematic diagram of the microcolumn considered in this work. (b) The feature of gradually zoomed node configuration

near tip and lens. Node density increases at the end of tip and lens. (c) Estimated potential and electron beam trajectory in the region of

source and the Einzel lens.
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method works well in a real full microcolumn structure, we
have considered a system already reported.17) The structure
of the microcolumn considered in this work is exactly the
same as that depicted in Fig. 5(a).

The spacings between the first lens and the second lens
(the spacings between the second lens and the third lens) in
the source lens system were fixed to be 250 mm (600 mm) and
the aperture diameter of the extractor (first lens of the source
lens), center lens, and the limiting aperture was 5, 100, and
2.5 mm, respectively. The distance between the end of source
lens and the first lens of the Einzel lens is taken to be
2050 mm, and the diameter of each Einzel lens and the
spacing between them was set to be 200 and 250 mm,
respectively. Here, the thicknesses of all the lenses were also
set to be 2 mm. The operation of this system at 1 keV beam
energy was simulated assuming that beam focusing is
performed in retarding mode with the applied voltage of
�780V, which is the same value used in the reference. The
working distance and the beam diameter obtained through
our simulation are 1.026mm and 15.8 nm, respectively while
those of the reference are 1.0mm and 16 nm.

The above examples ensure that our point collocation
scheme using the FMLSRK method is well applied for the

electrostatic field analysis in general electromagnetic sys-
tems and the optimization of vacuum microelectronic
devices or microcolumn systems. As discussed above, the
aspect ratio of a microcolumn system is very large and as far
as the authors know, it is difficult to obtain a convergent
solution in a self-consistent manner in such a high aspect
ratio system. With this method, simply introducing a series
of local zooming regions containing relatively fine geome-
tries is sufficient for the convergency. Further detailed
analysis on the full microcolumn operation based on
changing the various parameters will be carried out.

5. Conclusion

A recently proposed computational methodology to solve
numerical solutions of partial differential equations, the
FCM was demonstrated and applied to the analysis of a
miniaturized electron beam column. This method has merits
such as easy applicability to high-aspect-ration systems and
convenient usage since it neither calculates the derivatives
separately nor does it require mesh generation. Through
error analysis of a system with a known analytic solution,
both numerically obtained shape functions and their deriva-
tives show excellent agreement with their analytic solutions.
We applied FCM for the analysis of a microcolumn structure
and obtained successful results compared with the previous
report. This method can be applied to any arbitrary system
regardless of its geometrical complexity and aspect ratio.
Most of all, this method is accurate and very convenient as
the mesh generation is not necessary, especially for 3-
dimensional problems.
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Fig. 6. Operation of the Einzel lens in (a) accelerating mode and (b)

retarding mode.
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