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Abstract

We consider an inverse problem arising in (uid (ow. An algorithm to 4nd the shape of a body in uniform
(ow is proposed when the tangential velocity on its boundary is given a priori. The (uid (ow is assumed to
be inviscid, incompressible and irrotational.
The essential idea to develop our algorithm is the boundary modi4cation process toward the solution shape

with the help of the perturbed integral equations. The perturbed integral equations are derived from the
boundary perturbation. We also give examples exhibiting the reliability for our proposed algorithm. c© 2002
Elsevier Science B.V. All rights reserved.
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1. Introduction

The applicable inverse problems are dealt with by many researchers in the 4eld of engineering and
applied mathematics [1,3,4,8]. Especially, many inverse problems determining the unknown geometry
are closely related with the design problems to improve the e?ciency of mechanism.
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In this paper, we determine the two-dimensional body pro4le in uniform potential (ow on which
the tangential speed is given a priori. As a typical example of such a problem, we can take a wing
design in aerodynamics. As a matter of fact, in potential (ow, the tangential speed of a (uid on the
boundary of a body is closely related with the pressure on it, which is called the Bernoulli theory.
Hence, if we can determine the body shape under consideration, we can design the shape of the
body with the desired pressure distribution on its boundary.

However, the inverse problem determining the shape is highly nonlinear, so it is not easy to
develop a robust and e?cient method without trial and error. Hence, an intrinsic observation of
this problem is needed to overcome the di?culties. We suggest an algorithm providing substantial
improvement, based on careful insights into the problem. In the present paper, we assume mainly
the symmetry of a body with respect to the axis coinciding with the outer (ow direction. We are
mainly interested in the development of the algorithm rather than the use of our technique in a
practical situation. Nevertheless, we also provide a nonsymmetric example.

In a similar situation to our problem for (uid (ow, Zedan and Dalton [10] used an axial source
distribution to 4nd the shape, Dinavahi and Chow [4] adopted vortex rings. They consider only the
symmetric cases. Our method also works on three-dimensional axisymmetric cases.

In Section 2, we state our inverse problem to 4nd a shape satisfying a given tangential velocity.
We also de4ne a direct problem associated with the inverse problem. In Section 3, to 4nd the solution
shape proposed in Section 2, we derive perturbed boundary integral equations which will be used
to develop our algorithm. We also give an example showing the reliability of these equations. In
Section 4, we propose our main algorithm to 4nd the solution shape. In Section 5, several examples
are given. In Section 5.1, there are several symmetric examples, which have steep shape, smooth
shape, front and rear angled shape with nonzero curvature, and so on. In Section 5.2, a nonsymmetric
example is given.

2. Problem statement

In this section, we introduce a direct problem 4rst, and then describe an inverse problem, which
is our problem.

First, let us de4ne the direct problem for the (uid (ow problem concerned with our inverse
problem de4ned in this paper.

The (ow considered in this paper is inviscid, incompressible and irrotational with uniform (ow
U = (U; 0) at the far 4eld and it passes around a body. Let � be a multiply connected domain in
R2 bounded internally by the surface of a body � at rest. We assume the uniform (ow U = (U; 0)
is speci4ed at the far 4eld. In order to 4nd the velocity 4eld u = (u; v) for the two-dimensional
incompressible (ow, it is convenient to introduce the stream function �(z) such that

@�
@y

= u;
@�
@x

=−v; (2.1)

where z = (x; y) is a point in the (ow domain in R2. When vortices with strength �(w) at w∈�
are properly distributed on �, the induced (ow 4eld u from the vortices on � has the circulation �
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Fig. 1. (n; s) coordinate system on a curve and perturbation.

which is de4ned by

�=
∫
�
u(z) · s(z) d�z; (2.2)

where s(z) is the unit tangential vector at z∈� as shown in Fig. 1. Furthermore, the stream function
� describing the (ow can be written as follows:

�(z) = Uy +
∫
�
�(w) log |z − w| d�w + C; z = (x; y)∈�; (2.3)

where � is a continuous function on � and C is a constant. Here, � and C are to be determined in
order that the value of � on � is zero and that (2.2) is satis4ed for given �. Although the stream
function � in (2.3) is de4ned in the exterior of � (z∈�), we may consider � as a function de4ned
inside of � since the function on the right-hand side of (2.3) is well de4ned in N�

c
. The former and

the latter are denoted by �− and �+, respectively, which are harmonic with zero boundary values.
Let n be the unit outward normal vector to �. Since the surface of a body itself is a stream line,

the velocity on either side of � can be written as

u±|� = q±s =
@�±

@n
s; (2.4)

where q− and q+ are the (uid speeds on the outside and on the inside of �, respectively.
For any z∈�, the following are obtained by diOerentiating �± along the vector n (see [9]):

@�+

@n
(z) = Ue2 · n(z) + ��(z) +

∫
�
�(w)

n(z) · (z − w)
|z − w|2 d�w; (2.5)

@�−

@n
(z) = Ue2 · n(z)− ��(z) +

∫
�
�(w)

n(z) · (z − w)
|z − w|2 d�w: (2.6)
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Subtracting (2.6) from (2.5), we have the following equations:

2��(z) =
@�+

@n
(z)− @�−

@n
(z) = q+(z)− q−(z): (2.7)

Since the surface of the body is a stream line and we assume that the stream function � is zero on
�, we have

Uy +
∫
�
�(w) log |z − w| d�w + C = 0 ∀z∈�: (2.8)

Since �+ is a bounded harmonic function and the continuity of � up to boundary implies that
�+(z) = �−(z) = 0 for all z∈�, from the maximum principle we have �+ ≡ 0. Thus, we have
q+ = 0 on �. Therefore, we have the following relationship between � and q− such that

�(z) =− 1
2�

q−(z): (2.9)

Throughout the paper, q− will be denoted by q, which represents the speed of (uid on �.
Therefore, let us summarize the above statements: If the circulation � and the shape of a body

� are given, then there exist unique � and C which satisfy the system of equations,

�=−2�
∫
�
�(z) d�z; (2.10)

Uy +
∫
�
�(w) log |z − w| d�w + C = 0 ∀z∈�: (2.11)

The problem to 4nd � and C is called the direct problem. For the unique solvability of the direct
problem, refer to [7]. The solution � and C of (2.10) and (2.11) are closely associated with the
circulation �, which is explained in detail in Appendix A.
Secondly, we introduce the inverse problem corresponding to the direct problem (2.10) and (2.11).

The direct problem is to 4nd the solution pair (�; C) of (2.10) and (2.11) for a given data (�;�).
The inverse problem is to 4nd � when � (or q) is given and � is 4xed. We de4ne our inverse
problem in the following:

Inverse problem (IP). When the 6ow speed is given with the distribution q as a function of x; we
7nd the body surface � as a function of x whose relationship with q is given by (2.10) and (2.11).

This kind of problem has the ambiguity such that we assign the tangential speed q(z) to point
z∈� a priori even though � is unknown. To circumvent this, we assume the shape of a body is
symmetric with respect to the x-axis parallel to the direction of far 4eld uniform (ow. The upper
half part of the shape of the body, denoted by �+, is assumed to be the graph of a continuous
function of x, i.e.,

�+ = {(x; f(x))∈R2 |f : [− a; a] → R; x∈ [− a; a]; f(−a) = f(a) = 0}: (2.12)

Thus, the velocities at (±a; 0) are zero and the (ow is symmetric.
However, for nonsymmetric case, we consider the shape is parametrized by the angle and we can

de4ne the tangential velocity in advance.
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3. Mathematical formulation

For the problem to 4nd the shape of a body under some constraints, the essential step is the shape
modi4cation from the previous con4guration of the surface of a body satisfying the constraints. In
this section, we will derive the perturbed integral equations from the direct problem, which are
used to construct our numerical algorithm based on the modi4cation of the shape of a body to 4nd
the solution shape. We will derive the perturbed integral equation using the usual (n; s)-coordinate
system on the boundary of a body where n is the outward normal vectors, and s is the unit tangential
vector to the surface of a body �.

We let � be the smooth boundary of a body, and �� the perturbed boundary from � obtained by
a small perturbation w� de4ned by

w� = w+ ��(w)n(w); w∈�; (3.1)

where �(w) is a su?ciently smooth function de4ned on � and �¿ 0 is a small real number (see
Fig. 1).

Let �� denote the perturbed domain of � obtained by the boundary perturbation (3.1), and ��

denote its boundary. If we denote by �� the stream function describing the (ow around �� such
that

��(z) = Uy� +
∫
��

��(w�) log |z − w�| d�w� + C�; z∈��; (3.2)

then we have two sets of integral equations on � as follows:
Direct problem on �

�=−2�
∫
�
�(w) d�w; (3.3)

− Uy − C =
∫
�
�(w) log |z − w| d�w ∀z∈�: (3.4)

Perturbed problem on �

�=−2�
∫
��

��(w�) d�w� ; (3.5)

− Uy� − C� =
∫
��

��(w�) log |z� − w�| d�w� ∀z� ∈��; (3.6)

where z� = z + ��(z)n(z) and y and y� are the y-coordinates of z and z�, respectively.
We expand the perturbed strength ��(w�) on �� in (3.6) in terms of �,

��(w�) = �(w) + ��1(w) + O(�2); (3.7)

for any w∈�, where w� = w+ ��(w)n(w). We also expand C� = C + �C1.
Let s be the arc-length parameter of the curve �. Then we have the arc-length variation of �� for

the small boundary perturbation (3.1),

|�′
�(s)|= 1− ��(s)�(s) + O(�2); (3.8)
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where �(s) is the curvature of � at s. From the de4nition of z� and w�, we have

z� − w� = (z − w) + �(�(z)n(z)− �(w)n(w)) (3.9)

and we can calculate the perturbed kernel function in (3.6) as follows:

log |z� − w�|= log |z − w|+ �
(
�(z)

@
@nz

log |z − w|+ �(w)
@
@nw

log |z − w|
)
+O(�2): (3.10)

Substituting the perturbations (3.7), (3.10) and (3.8) into the integral equation (3.6) and collecting
terms in each � order, we can obtain the perturbed boundary integral identity:∫

��

��(w�) log |z� − w�| d�w� =
∫
�
�(w) log |z − w| d�w

+ �
[
−

∫
�
�(w)�(w)�(w) log |z − w| d�w

+�(z)
∫
�
�(w)

@
@nz

log |z − w| d�w

+
∫
�
�(w)�(w)

@
@nw

log |z − w| d�w

+
∫
�
�1(w) log |z − w| d�w

]
+O(�2): (3.11)

Here, using the following approximation,

− Uy� =−U [y(z) + ��(z)e2 · n(z)] + O(�2); (3.12)

incorporated with the equations (3.6), (3.4) and (3.11), we can obtain the equations between �1 and
� such that

Perturbed boundary integral equations (PBIE)

− Uy − C =
∫
�
�(w) log |z − w| d�w; (3.13)

− U�(z)e2 · n(z)− C1 =−
∫
�
�(w)�(w)�(w) log |z − w| d�w

+�(z)
∫
�
�(w)

@
@nz

log |z − w| d�w

+
∫
�
�(w)�(w)

@
@nw

log |z − w| d�w

+
∫
�
�1(w) log |z − w| d�w ∀z∈�; (3.14)

where � is the curvature with respect to (n; s) coordinate system on �.
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Here, if we use Eq. (2.6) and the following fact:

@�−

@n
(z) =−2��(z);

the perturbed integral equation (3.14) can be rewritten as follows:

C1 − ��(z)�(z)−
∫
�
�(w)�(w)�(w) log |z − w| d�w +

∫
�
�(w)�(w)

@
@nw

log |z − w| d�w

=−
∫
�
�1(w) log |z − w| d�w: (3.15)

To determine the constant C1 in (3.14), we need one more equation. From a similar procedure
used in deriving (3.14), we can obtain the constant circulation condition using Eqs. (3.3) and (3.5),
so that we have

Constant circulation condition (CCC)∫
�
�(w)�(w)�(w) d�w =

∫
�
�1(w) d�w: (3.16)

For simplicity, we de4ne the following singular integral operators:

I�[f](z) = f(z); (3.17)

K�[f](z) =
∫
�
�(w)f(w) log |z − w| d�w; (3.18)

F�[f](z) =
∫
�
f(w) log |z − w| d�w; (3.19)

D�[f](z) =
∫
�
f(w)

(z − w) · n(z)
|z − w|2 d�w; (3.20)

D∗
�[f](z) =

∫
�
f(w)

(z − w) · n(w)
|z − w|2 d�w: (3.21)

Then the integral equation (3.15) can be rewritten as the integral operator form,

C1 − �I�[��](z)− K�[��](z)− D∗
�[��](z) =−F�[�1](z): (3.22)

We have derived the perturbed integral equations (3.16) and (3.15) formally. The example in
Appendix B convinces us the reliability of these equations.

Here, it should be pointed out that the solution � of the perturbed boundary integral equations
(3.16) and (3.15) may not be unique for given shape � and �1. We provide an example showing
the nonuniqueness of � in Appendix C.
The problem in the case of symmetric body is treated here. Assume that the body pro4le � of

the body is symmetric with respect to the x-axis which is parallel to the outer (ow direction. Hence
the (ow 4eld must be symmetric. We also assume �= 0.
Let us decompose the pro4le � into �+ and �− as shown in Fig. 2. The quantities �; �1; � and

� appearing in an arbitrarily shaped body have the symmetries of

�( Nz) = �(z); �( Nz) = �(z); (3.23)
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Fig. 2. Symmetric case.

�( Nz) =−�(z) and n( Nz) = n(z); (3.24)

where the over-bar means re(ection about the symmetric axis. From these symmetries we have the
following formulae:

K�+[��](z) =
∫
�+

�(w)�(w)�(w) log
|z − w|
|z − Nw| d�w; (3.25)

F�+[�1](z) =
∫
�+

�1(w) log
|z − w|
|z − Nw| d�w; (3.26)

D�+[�](z) =
∫
�+

�(w)
[
(z − w) · n(z)

|z − w|2 − (z − Nw) · n(z)
|z − Nw|2

]
d�w; (3.27)

D∗
�+[��](z) =

∫
�+

�(w)�(w)
[
(z − w) · n(w)

|z − w|2 − (z − Nw) · n(w)
|z − Nw|2

]
d�w: (3.28)

From our symmetry assumption, we can 4x the front-end and the rear-end points of a body at
which the boundary of the body intersects with the x-axis of the symmetry line, for example, locating
the front-end and the rear-end point at (−a; 0) and (a; 0), respectively. Furthermore the body shape
is assumed to be a function of x variable, i.e., if �+ is the upper boundary of a body, then it can
be parameterized by

�+: y = f(x); −a6 x6 a:

If we consider the boundary perturbation in this situation as follows:

w�(x) = w(x) + ��2(x)e2; (3.29)
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then the following relationship between � at (3.1) and �2 is obtained

�2(x) = �(x)
√

1 + (f′(x))2; (3.30)

where e2 = (0; 1). Thus, the equivalent boundary variation (3.30) is applicable in the symmetric case
from previously calculated values of �. The symmetric (ow assumption makes all of constants C; C�,
and C1 zero. In fact, under the assumption of the symmetry, we have the two equations

Uy +
∫
�
�(w) log |z − w| d�w + C = 0 ∀z = (x; y)∈�+;

Uy∗ +
∫
�
�(w) log |z∗ − w| d�w + C = 0 ∀z∗ = (x; y∗)∈�−;

where z∗ is the symmetric point of z with respect to x-axis. Summing up these equations, we have∫
�+

�(w) log |z∗ − w| |z − w| d�w +
∫
�−

�(w∗) log |z∗ − w∗| |z − w∗| d�w∗ + 2C = 0

and by the symmetry and (3.24) we have∫
�+

�(w) log |z∗ − w| |z − w| d�w +
∫
�+

−�(w) log |z∗ − w| |z − w| d�w + 2C = 0:

Therefore, we have C =0. Also we have C� =0 since � is symmetric. Since C� =C + �C1, we have
C1 = 0.

4. Boundary modi#cation algorithm

In this section, we propose an algorithm to 4nd the solution shape. The essential step is to
determine how to modify the boundary from a given shape. Our algorithm is an iterative procedure
based on the perturbed boundary integral equations (3.15) and (3.16). We denote by q(x) the given
tangential velocity.

Step 1: Estimate an initial shape of body denoted by �(0).
Step 2: Suppose �(n) are previously given. In order to calculate the vortex strength �(n) located

at the boundary of �(n), solve the direct problem:

�=
∫
�(n)

�(n)(w) d�w; (4.1)

− Uy − C =
∫
�(n)

�(n)(w) log |z − w| d�w (4.2)

for any z = (x; y)∈�(n). Set q(n) =−2��(n).
Step 3: From the tangential speed q(n) on �(n), calculate the boundary variation �(n) using the

perturbed boundary integral equation (3.15) in cooperation with the constant circulation
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condition (3.16):∫
�(n)

�(w)�(n)(w)�(n)(w) d�w =
∫
�(n)

1
2�

(q− q(n))(w) d�w; (4.3)

C1 − ��(n)�(n) −
∫
�(n)

�(w)�(n)(w)�(n)(w) log |z − w| d�w

−
∫
�(n)

�(n)(w)�(n)(w)
(z − w) · n(w)

|z − w|2 d�w =−
∫
�(n)

1
2�

(q− q(n))(w) log |z − w| d�w (4.4)

for any z∈�(n).
Step 4: Modify the boundary �(n) toward the solution shape in the following manner:

�(n+1): w(n+1) = w(n) + ��(n)n|�(n) ; (4.5)

where � is a relaxation factor.
If ‖�(n)‖ is less than tolerance, then STOP.
Otherwise, go to Step 2.
As usual, the value of � may be properly chosen for convergence.

5. Numerical experiments

5.1. Symmetric case

In our numerical experiments, the solution shape is assumed symmetric with respect to the outer
(ow direction, and we reformulate the (n; s)-coordinate system to the (x; y)-coordinate system. Hence,
it su?ces to consider our inverse problem (IP) on the upper half plane. The upper shape of a body
is assumed to be represented by

�+: y = f(x) for all x∈ [− a; a]; (5.1)

f(−a) = f(a) = 0: (5.2)

The boundary variation is taken in the y-direction as in (3.29). In our algorithm, we calculate the
n directional boundary variation � 4rst and transform it to the y directional boundary variation �2
by (3.30).

In the numerical calculation, the boundary element method is chosen to solve the boundary integral
equations (4.2) and (4.4) (see [2]). We obtain the numerical solution by representing the body shape
y = f(x) by a set of N mesh points or nodes uniformly distributed along the x-axis. The unknown
variables � in direct problem (2.10) and (2.11), and � in inverse problem (3.15) and (3.16) are
taken to be piecewise constants. Under this assumption, all integrals in the algorithm are discretized
using the standard Gaussian four-point quadrature rule. Then we obtain a linear system of which
solution gives the values of � and � at the midpoints between the nodes. After linear interpolation
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Fig. 3. Target shape: f(x) = (−0:1 ∗ tanh(30x) + 0:5) sin(cos−1 x).

Fig. 4. Target shape: f(x) = 0:2
√
1− x2.

Fig. 5. Target shape: f(x) = 1− x2.

of these values back to the nodes, � is used for the modi4cation of mesh points. We modify the
shape in terms of the interpolated � at every node.

The numerical examples are presented in this section. To convince the robustness at our pro-
posed algorithm, we consider various examples which have the following characters; steep
shape (Figs. 3 and 7), smooth shape (Fig. 4), front- and rear-angled shape with nonzero curvature
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Fig. 6. Target shape: f(x) = 0:5 cos( �2 x).

Fig. 7. Target shape: f(x) = (−0:1 ∗ tanh(30x) + 0:5) sin(cos−1 x).

Fig. 8. Target shape: f(x) = 0:5
√
1− x2 when −16 x6 0; 0:5(1− x) when 06 x6 1.

(Fig. 5), front- and rear-angled shape with zero curvature (Fig. 6) and inside-angled shape
(Fig. 8). The dotted lines in all 4gures represent the solution shapes, and the solid lines the in-
termediate shapes of every several iterations. The wiggles occurring at the intermediate shapes result
from the nonsmooth numerical curvature eOect near both ends. Although the smaller relaxation
factor � is needed when steep shape appears, � is nearly 1 in almost all cases. This is another
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Fig. 9. L1 norm of �(n) in the last case (Fig. 8).

evidence for the robustness of our proposed algorithm. Finally, we show the L1 error ‖�(n)‖ in
Fig. 9.

5.2. Asymmetric case

In this section, we illustrate an asymmetric example with distinct stagnation points on the boundary
of a target body. This situation is general, interesting and important in the real case.

We assume the boundary of the target body is smooth and star-shaped with respect to the origin
and a circulation � is properly chosen to make stagnation points on the boundary. In this case, we
have to consider some extra conditions when we solve the perturbed boundary integral equations for
each iteration. Indeed, if the previous boundary of a body �(n) is given, the solution �(n)�(n) of the
perturbed integral equations (4.3) and (4.4) has to be zero at each stagnation point on the boundary
�(n). If x(n)

+ and x(n)
− are distinct stagnation points on �(n), we have to solve the perturbed boundary

integral equations (4.3) and (4.4) in Step 3 with the additional conditions

�(n)(x(n)
+ )�(x(n)

+ ) = �(x(n)
− )�(x(n)

− ) = 0: (5.3)

Reviewing the symmetric (ow case, there exist always two distinct stagnation points at which the
boundary of the symmetric body intersects its axis of symmetry.

Then, to calculate �(n), we divide �(n)�(n) by �(n) in this step. However, since the numerical
stagnation points contain numerical errors, we used the Fourier approximation of calculated �(n)

instead of �(n) itself for boundary modi4cation:

�(n)(!) ≈ c0 +
N∑
k=1

sk sin k!+ ck cos k!;

where N is the number of Fourier modes and ! (−�¡!¡�) is the angle of point on �(n).
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Fig. 10. Intermediate shapes toward the target shape �TG.

Here, we choose the asymmetric target shape �TG by

�TG:




x2

22
+

y2

( 43)
2
= 1; y¡ 0;

x2

22
+ y2 = 1; y¿ 0:

(5.4)

We also choose the circulation �= 15. In this case, there are two stagnation points on �TG. From
the initial shape �(0), the circle centered at origin with radius 2, we obtain the intermediate shapes
toward the target shape �TG as shown in Fig. 10. Here we used nine Fourier modes to approximate
�(n). To calculate the solution of the Eqs. (4.3), (4.4) and (5.3), we use the constant boundary
element method. To obtain the tangential velocity and the circulation more accurately on the target
shape, we use smaller size elements on the target shape than those on the initial shape. In our
example, we use 256 boundary elements on the initial and all intermediate shapes, and 512 elements
on the target shape. Initial shape is in general far from the target shape, so that, for each initial
iteration, it is possible for the modi4ed shape to cross itself when it moves toward the target shape
by poor �(n). To prevent this phenomenon, we vary the relaxation factor � in Step 4 by

�n =
�0 + ($n)2

1 + ($n)2
;
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Fig. 11. Comparison �TG with �NS.

where n is the iteration number, and �0 and $ are control parameters. In our example, we choose
�0 = 0:01 and $= 0:025.

Our algorithm converges well to the shape almost close to our target shape. We compare the
strength �NS on the 4nal shape obtained by our algorithm with �TG on the target shape. Fig. 11
shows our algorithm works well in the case of asymmetric, too.
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Appendix A. Determining the constant C in (2.11)

We show how to determine the constant C for the given circulation � for readers’ convenience
even though it appears in literature [6].

Let � be the boundary of a body in R2. If we de4ne the harmonic function � such that

�(z) =
∫
�
�(w) log |z − w| d�w;
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then it is known (see [7]) that there exist unique �(w) satisfying∫
�
�(w) d�w = 1; (A.1)

�|� = $; (A.2)

�(z) = log |z|+O
(

1
|z|

)
as |z| → ∞: (A.3)

The positive number e$ is called the outer mapping radius of � (see [5]). In order to determine the
constant C in (2.11), we consider two separate problems as follows:

Zero circulation problem (ZCP). Find �0(w) and C0 satisfying∫
�
�0(w) log |z − w| d�w =−Uy − C0 ∀z∈�; (A.4)∫

�
�0(w) d�w = 0: (A.5)

Logarithmic capacity problem (LCP). Find �c(w) and $ satisfying∫
�
�c(w) log |z − w| d�w = $ ∀z∈�; (A.6)∫

�
�c(w) d�w = 1: (A.7)

Let us consider the relationship between the pair (�; C) and both pairs of (�0; C0) and (�c; $).
The solution pair (�; C) in the direct problem (2.10) and (2.11) can be represented with the solution
pairs (�0; C0) and (�c; $) of (ZCP) and (LCP), respectively, such that

� = �0 − �
2�

�c; (A.8)

C =
�
2�

$+ C0; (A.9)

where � is the given circulation, $ is the constant in logarithmic capacity problem (A.6) and (A.7)
and C0 is the constant to be determined by zero circulation problem (A.4) and (A.5).

Let �0(w) and �c(w) be the unique solutions of problems (A.4), (A.5) and (A.6), (A.7), respec-
tively. Consider the single layer potential,

�∗(z) = Uy +
∫
�

(
�0(w)− �

2�
�c(w)

)
log |z − w| d�w: (A.10)

Then we have the following estimates:

�∗|� =−C0 − �
2�

$; (A.11)

�∗(z) = Uy − �
2�

log |z|+O
(

1
|z|

)
(|z| → ∞): (A.12)
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If �∗∗ is de4ned by

�∗∗(z) ≡ �∗(z) +
(
�
2�

$+ C0

)
; (A.13)

then it satis4es the following equations:

�∗∗|� = 0; (A.14)

�∗∗(z) = Uy − �
2�

log |z|+
(
�
2�

$+ C0

)
+O

(
1
|z|

)
(|z| → ∞): (A.15)

But for our solution �, we can obtain the following:

�|� = 0; (A.16)

�(z) = Uy − �
2�

log |z|+ C +O
(

1
|z|

)
(|z| → ∞): (A.17)

Thus, the function �∗∗ −� has zero value on � and

lim
|z|→∞

�∗∗(z)−�(z) =
�
2�

$+ C0 − C:

Since �∗∗ −� is harmonic in the exterior domain of �, we conclude that C = (�=2�)$+ C0.

Appendix B. Example for (3.15) and (3.16)

We consider the potential (ow around a cylinder in uniform (ow Ue1; e1 = (1; 0). Assume the
radius of cylinder is a¿ 0, and the center of the cylinder the origin. Let the shape of this cylinder
be denoted by �. Suppose the boundary perturbation of cylinder is de4ned as shown in Fig. 12.
Assume that �� represents the perturbed shape. For the convenience of computation, we adopt the
complex notation and polar coordinates (r; !). The complex potentials for the (ows with respect to
the inner circle and the outer circle are written as follows:

�(z) = U
(
z +

a2

z

)
− i

�
2�

log
z
a
; (B.1)

��(z) = U
(
z +

(a+ �)2

z − i�

)
− i

�
2�

log
z − i�
a+ �

− iU�: (B.2)

Let w� ∈�� be the perturbed point of w∈�. Then we have

w� = w+
[
�(−(1 + sin !)) + �2

cos2 !
2a

]
n +O(�3)n (B.3)

and we obtain

�=−(1 + sin !): (B.4)
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Fig. 12. Dilation and translation perturbation (y-axis).

From the identity (2.9) and the relationship between (uid velocity u= (u; v) and complex potential
�

d�
dz

= u− iv;

we have

�(w) =
U
�
sin !− �

4�2a
; (B.5)

��(w�) = �(w) + �
(
−U
�

cos2 !
a

+
�

4�2a2

)
+O(�2) (B.6)

and consequently we obtain

�1(w) =−U
�

cos2 !
a

+
�

4�2a2
: (B.7)

Also we can calculate

C� =
�
2�

log a+ �
(
−U +

�
2�a

)
: (B.8)

Thus, we have

C1 =−U +
�
2�a

: (B.9)

Now we are to calculate each term in the integral equation (3.15). From the integral identities,
for any integer n¿ 1,∫ �

−�
sin n! log |1− ei(!−))| d!=−�

n
sin n); (B.10)
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∫ �

−�
cos n! log |1− ei(!−))| d!=−�

n
cos n); (B.11)

we can calculate the terms in (3.15):

C1 =−U +
�
2�a

(B.12)

− K�[��](z) =
(
U − �

2�a

)
log a−

(
U − �

4�a

)
sin)+

U
4
cos 2); (B.13)

− D∗
�[��](z) =− �

4�a
+
U
2
; (B.14)

F�[�1](z) =−
(
U − �

2�a

)
log a+

U
4
cos 2): (B.15)

Therefore, we are con4dent in the integral equation (3.15).

Appendix C. Some remarks on nonuniqueness of �

Since we have to solve the integral equation (3.14) numerically, there is a need to demonstrate
the uniqueness of the solution � for the boundary integral equation (3.14). To do this, it su?ces to
show that, if we assume that �1 = 0 on �, the corresponding solution � is zero. This implies that
if the solution shape is achieved, then there is no need of further changes in the boundary. Here,
we consider the special case that the pro4le of a body is the circle with radius a¿ 0 and the target
speed q is given such that

q(!) =−2U sin !+
�
2�a

:

Let L2[− �; �] be the function space which is composed of all square integrable functions on the
interval [− �; �] equipped with the usual inner product (f; g) de4ned by

(f; g) =
∫ �

−�
f(x)g(x) dx:

If we 4nd the boundary variation � periodic and continuous on [− �; �], then it may be expanded
in terms of Fourier series such that

�(!) = +0 +
∞∑
n=1

+nein! +
∞∑
n=1

+ne−in!; (C.1)

where +n is the complex conjugate of +n and +0 is real. The Riemann–Lebesgue lemma provides us
the decay of coe?cients

lim
n→∞+n = 0; (C.2)

since continuous function on [− �; �] are in L2[− �; �].
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Substituting the Fourier series expansion (C.1) of � into the integral equation (3.14) and applying
�1(w)=0 and calculating each integral using the integral identities (B.10) and (B.11), we can obtain
the following results:

−K�[��](z) =−U
2i

[2(+1 − +1)log a] +
�
2�a

+0 log a

− U
2i

[ ∞∑
n=1

1
n
(+n+1 − +n−1)ein) − 1

n
(+n+1 − +n−1)e−in)

]

− �
4�a

[ ∞∑
n=1

1
n
+nein) +

∞∑
n=1

1
n
+ne−in)

]
;

�(z)D�[�](z) =
�
4�a

[
+0 +

∞∑
n=1

+nein) +
∞∑
n=1

+ne−in)

]
;

−D∗
�[��](z) =−U

2i
(+1 − +1) +

�
4�a

+0

and

−U�(z)(e2 · n)(z) = U
2i

[(+1 − +1)] +
U
2i

[ ∞∑
n=1

(+n−1 − +n+1)ein) + (+n+1 − +n−1)e−in)

]
:

Equating both sides of (3.14) and rearranging the resultant equation in each Fourier term, the fol-
lowing equation can be obtained:

−C1 +
U
2i

(+1 − +1) +
U
2i

[ ∞∑
n=1

(+n−1 − +n+1)ein) −
∞∑
n=1

(+n−1 − +n+1)e−in)

]

=
�
2�a

+0(1 + log a)− U
2i

(+1 − +1)(1 + 2 log a) +
U
2i

[(+0 − +2)ei) − (+0 − +2)e−i)]

+
∞∑
n=2

[
U
2i

(+n−1 − +n+1)
1
n
− �

4�a
+n

(
1
n
− 1

)]
ein)

+
∞∑
n=2

[
−U
2i

(+n−1 − +n+1)
1
n
− �

4�a
+n

(
1
n
− 1

)]
e−in):

Comparing the coe?cients between both Fourier series, we can obtain the recursive relations:

− C1 + (1 + log a)
[
− �
2�a

+0 +
U
i
(+1 − +1)

]
= 0; (C.3)
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+n−1 − +n+1 − i
�

2�aU
+n = 0; (C.4)

+n−1 − +n+1 + i
�

2�aU
+n = 0; (C.5)

for all n¿ 2.
Applying the constant circulation condition (3.16) to �, we have

U
2�i

∫ �

−�
+1 − +1 d!−

∫ �

−�

�
4�2a

+0 d!= 0: (C.6)

This implies that
U
i
(+1 − +1)− �

2�a
+0 = 0: (C.7)

Thus, we obtain C1=0. And the general term +n of Fourier coe?cients recursively de4ned in (5.40)
is

+n = +1
an−2
+ − an−2

−
a+ − a−

+ +2
an−1
+ − an−1

−
a+ − a−

; n¿ 1; (C.8)

where a+ =−iK +
√
1− K2, a− =−iK −√

1− K2 and K = �=4�aU .
Here if we assume �= 0, then we have a+ = 1 and a− =−1. From the general term (C.8), we

can conclude that

+2n = +2; +2n−1 = +1; n¿ 1: (C.9)

In order to satisfy �∈L2[− �; �], the Fourier coe?cients must satisfy the decay condition (C.2), so
that we have +1 = +2 = 0.

Therefore, we obtain the following consequence:

�(!) = +0:

To ensure the uniqueness of �, one extra restriction is needed. For this, we 4x one point on shape,
i.e., �(0) = 0. Then we have

+0 = 0:

We have discussed the uniqueness of perturbed boundary integral equations in the case that our
goal shape is a circle under several assumptions. The above discussion gives us a guideline about
the unique solvability.
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