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SUMMARY 

The problem of finding the shape of a body with smallest drag in a flow governed by the two-dimensional steady 
Navier-Stokes equations is considered. The flow is expressed in terms of a streamfunction which satisfies a fourth- 
order partial differential equation with the biharmonic operator as principal part. Using the adjoint variable 
approach, both the first- and second-order necessary conditions for the shape with smallest drag are obtained. An 
algorithm for the calculation of the optimal shape is proposed in which the first variations of solutions of the direct 
and adjoint problems are incorporated. Numerical examples show that the algorithm can produce the optimal 
shape successfully. 
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1. INTRODUCTION 

This paper considers the minimum drag profile in two-dimensional steady incompressible viscous 
flow. Particular emphasis is laid on providing an efficient algorithm for the computation of optimal 
shapes. Although much literature is available on the domain optimization problem of continuum 
structural systems,' only a few studies on shape optimization problems in viscous flow have been 
reported. Pironneau has obtained the first-order necessary conditions for optimal profiles in Stokes 
flow2 and Navier-Stokes flow.3 Mironov4 has obtained the necessary conditions for minimum drag of a 
body when the flow is described by the steady Navier-Stokes equations. An algorithm for finding the 
optimal shape has been proposed, though programming was not attempted.2 Later Glowinski and 
Pironneau' determined numerically the approximate shape of a given area with smallest drag in 
laminar flow using the boundary layer approximation. Recently Cabuk and Modi6 derived the first- 
order necessary condition for the optimal profile of a plane diffuser providing the maximum static 
pressure rise and performed numerical computations. 

In the present study the first- and second-order necessary conditions for the optimal profile 
minimizing the rate of energy dissipation in steady two-dimensional viscous flow are derived. The flow 
field is expressed in terms of a streamfunction which satisfies a non-linear fourth-order partial 
differential equation with the biharmonic operator as principal part. In order to calculate the variations 
of the objective functional, we derive the boundary value problems satisfied by the first and second 
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variations of the solution in a formal way using the boundary perturbation method.' Mathematical 
justification of the characterization of variations of the solution is provided under some regularity 
assumptions. (Appendix I). Having found the first and second variations of the solution, the first- and 
second-order necessary conditions of Kuhr-Tucker type for optimality are obtained with the aid of an 
appropriate adjoint system. The approach in the appendices is a direct generalization of that developed 
by Fujii, who treated the domain optimization problem constrained by either a Dirichlet8i9 or a 
Neumardo boundary value problem of a second-order differential equation with the harmonic 
operator as principal part. 

Based on the first- and second-order necessary optimality conditions, a numerical algorithm is 
proposed in which the first variation of the solution is incorporated. Solutions of the Navier-Stokes 
equations, the first variation and the adjoint problem are computed using the finite difference method. 
If a profile sufficiently close to the optimal shape can be assumed, the proposed algorithm is found to 
yield the optimal profile within a few iterations. 

2. PROBLEM STATEMENT 

We consider the steady two-dimensional incompressible viscous flow in a multiply connected domain 
Q bounded internally by the surface of a body Tb at rest and externally by a surface re on which the 
velocity field V = ( V l ,  V2) is specified (Figure 1). For two-dimensional incompressible flow it is 
convenient to introduce the streamfunction u such that 

dU 
= -v2. - dU - 

?J) = v17 8.X 

where v = ( V I  , v2) denotes the velocity field. The governing equation and the boundary conditions are 
written in terms of the streamfunction as 

In the above, all the quantities are non-dimensionalized and Re denotes the Reynolds number. 

l- 

n 

e x  

Figure 1.  Laminar flow over a body profile. l-: is the modified profile of Tb due to a boundary perturbation an. The outer 
boundary r" remains unchanged 
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Let us consider the following domain optimization problem. 

Problem 

Find the domain which minimizes 

with respect to Tb subject to the isoperimetric constraint 

Z(R) = dS2 = const. (3) J, 
The functional J defined by (2) is proportional to the rate of energy dissipation. Here u is the solution 
of boundary value problem (1) and it is assumed that the velocity distribution on the surface re does 
not depend on the shape of the body Tb. In the present study, uniform flow (V = const.) far from the 
body rb is considered and JVI is taken as the characteristic velocity. It should be noted that if the flow 
on the surface re is uniform, then the drag coefficient on Tb approaches JIRe as the minimum distance 
from the body surface rb to the surface re tends to infinity and thus the present problem of the 
minimum energy dissipation rate becomes equivalent to the minimum drag problem. 

3. MATHEMATICAL PRELIMINARIES 

In this section, expressions of the first and second variations of the objective functional with respect to 
the variation of the body surface, which is assumed to be sufficiently smooth, are derived using the first 
and second variations of the solution of boundary value problem (1). 

Firstly let us define the boundary variation. Let p ( s )  and ~ ( s )  be arbitrary smooth functions of arc 
length defined on Tb and let E be a positive number. Let each point on Tb be moved by Sn along the 
outward normal direction. The boundary variation Sn is given by 6n = EP(S) + E ~ I J ( ~ ) .  The curve 
constructed in this way is denoted by r:, which is smooth for sufficiently small E (Figure 1). Since we 
are interested in the optimal shape of the body, the exterior boundary re is kept unchanged. Let R, 
denote the domain enclosed by r" and and let uE be the solution of (1) in the new domain R,. 

Throughout the present work we assume the following. 

A l .  The classical solutions u and U, exist and are unique. 
A2. There exist sufficiently smooth functions 4 and II/ defined on d such that 

u,(x) - U(X) = E#J(X)  + E ~ J / ( x )  + o(e2), x E n a&, 

We call 4 and II/ the first and second variations of the solution respectively. 
Since both U& and u satisfy (l), it can be easily shown that the first and second variations 4 and + 

satisfy the equations 
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Next let us derive the conditions satisfied by 4 and $ on Tb. Consider a point x on rb and a 
corresponding point x, on r: such that x, lies on the outward normal n (Figure 1). Assume that the 
boundary variation dn = EP + e2a is positive. 

Taylor expansion of u,(x,) and ( d u , / d n , ) ( x , )  about the point x along the normal direction n are 
shown to be 

where n = (nl n2) and K denotes the curvature. On the right-hand sides of the above equations the 
dependence on the point x has been omitted for brevity. In obtaining the expression for du,/dn&, we 
have used 

n , = n + E  i c p n - - s  + E  lcon--s + o ( E ~ ) ,  ( E) 2 (  Z )  
where s denotes the unit tangent vector at x E Tb. Noting that 

for any f E C2, we have 

$ux $u,-d(Au) @u 
an2 dn2 d n  

K - .  nl 3--p+n2- - - - 

The no-slip condition on Tb requires that 

a$- 1 ,@u 8 u  1 2a(Au) $4 
-KP - - r J - - - P  -- - _  1 a4 * = - - p  - 

2 a n '  d n  2 an2 an2 2 a n  'ZPy  
since u = d u / d n  = 0 on rb. On the fixed external boundary re, 

since u and U, satisfy the same boundary conditions. 
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The above derivation of the first and second variations of the solution u with respect to the boundary 
variation 6n is purely formal. However, in Appendix I we provide the mathematical justification of the 
characterization of the two variations of the solution under some regularity assumptions by extending 
the approach of Fujii.*-" The second variation of the solution enables us to obtain the second-order 
necessary conditions for an optimal domain. 

The first and second variations of the functional J, namely dJ(') and 6J('), are defined by 

J(n&, U&) - J(Q,  u )  = &6J(') + E 2 6 . P  + 0 ( & 3 )  

and are expressed as 

where g is the integrand of the dissipation energy functional J: 

2 g = (UW - u..) + 4.;. 
By introducing an adjoint variable p as the solution of the boundary value problem 

expression (6) for the first variation 6 d ' )  can be rewritten as 

The proof is given in Appendlx 11. 

(n, s)-co-ordinates and considering the boundary conditions, 
With the help of the following equality, which has been obtained by expressing the integrands in 
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the second variatioin can be rewritten in the form 

The isoperimetric constraint (3) requires that p and (T should satisfy 

p d r  = 0, S, 
jrb ((T + +p2)  d r  = 0. 

If R is an optimal domain, then dJ(’) = 0 holds for every p that satisfies constraint (1 1). Thus, by the 
well-known Lagrange multiplier rule, there exists a constant 1 (Lagrange multiplier) such that 

8 p 8 - u  b 

Furthermore, since SZ attains the minimum of J, the second variation dJ(’) must satisfy the inequality 

for any p and (T satisfying (1 1) and (12). The second-order necessary condition for optimality can be 
written as 

for any p which satisfies constraint (11). In (14) the second-order boundary variation (T has been 
eliminated by using relation (12). It is noteworthy that the above second-order necessary condition is 
expressed in terms of solutions of the direct and adjoint problems and the first variation. 

We note that the first-order necessary condition (13) is equivalent to that derived by Pironneau? 
Setting v = (v1, v2) = (du/&, -au/ax) and w = (w1, w2) = (dp/dy,  -dp/dx) and taking the curl of 
(3.2) in Reference 3, we obtain equation (8) for the adjoint variable p. Furthermore, the no-slip 
condition v = 0 on rb yields 

on rb. 

4. NUMERICAL ANALYSIS 

For searching the optimal shape, it is crucial to provide an efficient profile modification process. One 
difficulty in the iterative process is finding a new profile which satisfies the optimality condition (13) 
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most closely in spite of the fact that the solution for the new profile is not known a priori. In the 
present study we propose an algorithm in which the first variations of solutions of the direct and 
adjoint problems are incorporated. In the numerical experiment the optimum body is assumed to be 
symmetric with respect to the outer uniform flow direction. 

4.1.  Profile modlfication method 

In this subsection we propose an iterative profile modification method whereby a new profile 
satisfying the optimality condition (13) as closely as possible is constructed from a given shape. Firstly 
we denote the first variation n of  the solution p of adjoint problem (8) corresponding to the boundary 
variation E P ( S ) .  Let p ,  be the solution of (8) in the new domain 0,; then we have 

p , (x )  - p(x)  = E X ( X )  + o ( E ~ )  for any x E Q n Q,. 

We can derive the governing equation for n by the same procedure as for 4: 

It should be noted that the first variations 4 and n are linear in p .  Let 4i and ni be the first variations 
corresponding to the boundary variation pi. Then, corresponding to the boundary variation 

N 

P = C a i ~ i i  (16) 
i = l  

the first variations 4 and n are given by 

Let l-, be the body profile modified from an initially chosen profile l-0 by a boundary variation E ~ ( s )  
and let 

Then it is desirable to select T, (or E P )  on which the optimality condition (13), the constancy of A,, is 
satisfied as closely as possible. Since U ,  and p ,  can be approximated by 

u, = uo + E 4 ,  PE = P o  + E X ,  

A, is approximately written as 

= ho + &aho + O(c2) on rE. 
Although A, is defined on l-,, it can be evaluated 
initially chosen To: 

approximately in terms of uo,po, 4l n and p on the 

+ O(E’), 5 E To. (19) 
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Upon applying expressions (16) and (17a, b) to (19), the unknown constant Uk are determined by 
requiring that the difference between A& given by (19) and a constant denoted by 20 (not yet 
determined) becomes least in the mean square sense. That is, we seek constants 20 and U k  

(k = 1, . . . , N) which minimize the functional 

where c(k = Eak. Since the approximate expression (19) for I\& becomes inaccurate for large E ,  we 
impose the following constraint to ensure that the variation is not too large: 

where EO is a small constant given beforehand. 

4.2. Proposed algorithm 

drag profile numerically as follows. 

P k  (k = 1, . . . , N) of the boundary variation. 

Based on the discussion in the previous section, we propose an algorithm for finding the minimum 

Step 0. Choose an initial body shape Ti( i  = 0) appropriately and the basis functions 

Step 1. Generate a computational grid in the domain Qi bounded by rE and Ti. 
Step 2. Obtain u, the solution of the direct problem, and then p, the solution of the adjoint problem. 
step 3. Obtain the first varaitions 4 k  and x k  of solutions of the direct and adjoint problems for 

each k. 
Step 4. Determine the modified shape re according to the process described in the previous 

subsection. Let rE be Ti+l. 

Step 5. Go to Step 1 unless the change in body shape is smaller than a prescribed convergence 
parameter. 

Glowinski and Pironneau5 (also Cabuk and Modi6) proposed a shape modification procedure based 
on (9) by displacing To normally through a distance proportional to A0 - k, where k is the mean value 
of 120 on To. Numerical experiments show that the iteration method suggested in Reference 5 permits 
only very small deformation of the shape to prevent new boundary nodes from coalescing and requires 
relocation of boundary points to damp small-amplitude wiggles which deteriorate the numerical results 
in the subsequent calculation. 

On the other hand, the shape modification procedure proposed in the present study, at the expense of 
computing the first variations fpk and nk, is shown experimentally to permit much larger deformations 
yet still give an acceptably smooth shape and thus many fewer iterations are needed for convergence to 
the optimal shape. Moreover, for the numerical calculation of the first variations of 16 paris of (bk and 
n k  at Re = 20 the required CPU time was about the same as that for u and p ,  

In the actual experiment we have chosen the scale EO moderately large at first and employed a small 
number of basis functions (N < 3 or 4). If the optimal boundary variation lies in the interior of 
inequality constraint (21), we choose a new EO smaller than the previous one and increase the number 
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of basis functions. The second-order necessary condition (14) was satisfied for each optimal shape 
obtained. 

Since the optimal shape is assumed to be symmetric with respect to the x-axis (the direction of outer 
flow), we expand p in a Fourier cosine series, taking into consideration constraint (1 1): 

N 

k =  1 

where s denotes the arc length parameter of Ti measured from the rear end and L denotes the half- 
length of profile Ti. 

Local analysis near the ends of the two-dimensional optimal body4 shows that the ends of the body 
must each be tangential to a wedge of angle 102.6". Since the basic profile modification method (Step 
4) with the boundary variation given by (22) can give only a smooth profile, we revise Step 4 in order 
to admit wedge shapes near the ends as follows. 

Step 4'. From the profile obtained by the basic profile modification method, calculate the tangents 
at the nodes next nearest to the front and rear ends (second nodes from the ends) and determine new 
end-points as the intersection points of the tangents and the x-axis. To join the end regions smoothly 
with the remaining part, construct splines using the end nodes and the second and third nodes from 
each end. In addition, assign the midpoint as the nearest node to each end on the spline. Since the 
profile obtained by the above procedure may change the area of the profile, scale the whole profile to 
yield the given area. 

4.3. Numerical results 

Numerical calculations are carried out using the finite difference method. The computational grid is 
generated by finding the conformal mapping of the unbounded flow region into a rectangle using the 
method suggested by Moretti." The grid is regenerated for various shapes which are formed during the 
iterative optimization process. A typical grid is shown in Figure 2. It is a perfectly orthogonal grid 
system from conformality. 

Since we are interested in the minimum drag profile in a uniform flow in an unbounded region, the 
computational domain should be sufficiently large that the final results are not affected significantly by 
a change in domain size. After several numerical experiments the location of the far boundary was 
chosen at a distance of about 25 times the chord length of the body. Any further increase in domain 
size caused a change in drage of less than 0.5% at Re = 20 with a 90 x 96 grid. The effect of grid size 
on the optimal shape is difficult to determine, since the optimal profile is not known a priori. Using 
grids of 45 x 48,70 x 96,90 x 96 and 90 x 128, calculations of the optimal shape at Re = 20 were 
carried out. The results show that the difference between optimal shapes for the last three grids is 
negligibly small and that the drag agrees within 0.1% error. We have chosen a grid size of 90 x 96 for 
the results presented in this work. 

All numerical solutions of the Navier-Stokes equations, the adjoint problem and the first-variation 
problem are obtained by successive overrelaxation (SOR) after formulating the problems as coupled 
second-order equations. This streamfunction-vorticity-like formulation adopted in the present study is 
superior to others in that the proposed optimization algorithm needs only the second derivatives of 
solutions. Cabuk and Modi6 have reported difficulties in solving the adjoint problem in a plane 
diffuser. In our case of external flow a coarse grid in the far field can cause instability in the solution of 
the adjoint problem. To overcome this difficulty, a fine mesh has been adopted in the far field as shown 
in Figure 2. 
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Figure 2. Typical grid (90 x 60) generated using conformal mapping 

Using the algorithm described above, two-dimensional optimal shapes are obtained for a body of 
area K at Reynolds numbers Re = 1, 10,20 and 40. The calculation at Re = 20 (the reference case) has 
been examined in particular detail to discuss convergence and accuracy. 

Since the present algorithm relies on the prediction of solutions of the direct and adjoint problems 
for the deformed body, it is essential to test the accuracy of approximate solutions obtained on the basis 
of first variations. Therefore a test case where the boundary variation cp = E cos(2s) is given on the 
unit circle is calculated at Re = 20. Figure 3 compares the exact distributions of bzu/dn2 and #pan2 
on the perturbed body and those obtained from the prediction method for E = 0.1 and 0.05. As seen in 
the figure, the predicted and numerical (exact) results for the perturbed body are indistinguishable for 

Figure 4 illustrates the optimal shape as well as the profiles at successive iterations starting from the 
unit circle at Re = 20. As seen in the figure, the angle of the wedge-shaped front and rear end regions 
approaches 102-6" as expected by the local analysis. In Figure 5 the distribution of A, (which should 
be constant on the optimal profile) on the profile at each intermediate iteration is depicted. The 
constancy of A& on the final profile is satisfied fairly well except near the front end of the body. 
In Figure 6 the distributions of pressure and skin friction for a circular cylinder and the numerically 

obtained optimal shape are illustrated. A rapid decrease in pressure seems to result in a decrease in the 

E = 0.05. 

4 4 
I I 

a (arclength) (Wl.n(lth) 

-4 

(a) -6 

Figure 3. Comparison of exact and approximate distributions of $u/an2 (vorticity) and $p/an2 (adjoint vorticity) on perturbed 
surface (p = cos(2s)) for (a) E = 0.1 and (b) E = 0.05. The full curve represents the numerically obtained exact distribution of 
&/an2 and the dotted curve the exact distribution of a'p/On2. Broken curves represent approximate distributions obtained by 

first-order variations 
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Figure 4. Profiles (Re = 20) at successive iterations 

drag force exerted on the body. As seen in the figure, the pressure decreases rapidly near the front end 
and then becomes nearly constant. The total drag on the body is comprised of the friction drag due to 
the tangential stress at the body surface and the form drag due to the normal stress. In Table I the values 
of friction drag, form drag and total drag at successive iterations are listed. The successive iteration of 
the profile modification process results in a more rapid decrease in the form drag than increase in the 

5 I I I I I I I I I 

unitcircle - 
4th iteration ---- 
6th itemtion _..-. 

4 -  - 

3 -  - 

2 -  

-1 I I 1 I I I 1 I I 

s [arclength] 

Figure 5. Distributions of A, at successive iterations (Re = 20). At the loth iteration A, becomes almost constant except near the 
front and rear ends 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
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Figure 6. 
(a) 

Distributions of pressure and skin friction on (a) 
part) and equivorticity 

(b) 
circular cylinder and @) optimal profile (Re = 20). Streamlines (upper 
lines (lower part) are also depicted 

friction drag and thus in a reduction of the total drag. For the calculations at other Reynolds numbers in 
the present study the same tendency is observed (Table 11). 

If the optimal shape is unique for steady flow at a given Reynolds number, the algorithm should give 
the same final result independently of the initial choice of body shape. The optimal shape determined 
iteratively from the unit circle and that from the optimal ellipse of smallest drag (major axidminor 
axis = 2.1 U0.47) are almost identical. The optimal ellipses at Re = 1, 10 and 40 have major axidminor 
axis ratios of 1.56/0.64, 1.94/0.51 and 2.29/0.44 respectively. Figure 7 shows the minimum drag 
profiles determined from the optimal ellipses at Re = 1, 10, 20 and 40. The optimal shape becomes 
longer and thinner at higher Reynolds number. The overall profile is found to be very close to the 
optimal ellipse and about one or two iterations were sufficient to find the optimal shape at a given 
Reynolds number. 

Since it is known that the flow at high Reynolds number is in general unsteady, we have not 
considered the optimal shapes for high-Reynolds-number cases. However, if a steady flow exists, the 
proposed algorithm is expected to work well. 
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Figure 7. Optimal profiles at various Reynolds numbers 
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Table I. Values of friction drag, form drag and total drag at 
successive iterations (Re = 20) 

Iteration Form drag Friction drag Total drag 
0 1.182 0.785 1.967 
2 0.839 0.892 1.730 
4 0.616 1.038 1.654 
6 0.495 1.132 1.628 
8 0.403 1.216 1.619 

10 0.363 1.254 1.617 

Table 11. Comparison of friction drag, form drag and total drag for circular cylinder, optimal ellipse and optimal 
body (area T )  at various Reynolds numbers 

Circular cylinder Optimal ellipse Optimal profile 
Re Form Friction Total Form Friction Total Form Friction Total 

drag drag drag h a g  drag drag drag drag drag 

1 5.219 5.107 10.325 2.924 6.962 9.886 2.628 7.249 9.877 
10 1.525 1.195 2.720 0.583 1.790 2.373 0.573 1.800 2.373 
20 1.182 0.785 1.967 0.379 1.235 1.614 0.355 1.259 1.614 
40 0.954 0.508 1.462 0.252 0.859 1.112 0.252 0.859 1.111 

5 .  CONCLUSIONS 

A shape optimization problem in two-dimensional steady viscous flow is considered. The first- and 
second-order necessary optimality conditions are derived in terms of a streamfunction which satisfies a 
fourth-order partial differential equation with the biharmonic operator as principal part. Thus the 
present approach may be considered as a direct generalization of that of Fujii,8-10 who considered a 
second-order partial differential equation with the Laplacian operator as principal part. The first-order 
optimality condition is equivalent to that derived by P i r o ~ e a u . ~  

To determine the optimal shape numerically, an algorithm is proposed in which the first variations of 
solutions of the direct and adjoint problems are incorporated. Numerical experiments carried out for 
low Reynolds numbers (Re < 40) show that the present algorithm gives satisfactory results after a few 
iterations. 

APPENDIX I: PROOF OF A CHARACTERIZATION THEOREM 

Let Q(x, <) and K(x, 5 )  be fimdamental solutions of the biharmonic operator -A2 and the harmonic 
operator -A having singularity at 5 respectively. We choose 

Note that A,Q(x, 5) = K(x,  5) .  
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For any < E R U d" let us introduce two boundary integrals defined on the boundary r of a domain 
R in [w2: 

where dT is the length element of r. Then for any < E R U fP and v E C4(a) it is known'2 that 

A<) . v ( t )  = - J Q(x1 <)A2v(x) dQ + F:(<) + sf(<), 

where the function p ( < )  on R U n" is defined by p ( < )  = 1 if 5 E R or p ( < )  = 0 if < E sz". Then we 
claim the following lemma. 

R 

Lemma 

Suppose a function v(<) E C4((sz) satisfies an integral equation such that for any 5 E R u fP, 

At) ' v(<) = - Q(x, OA'v(4 dQ + $(<) + 1 (.(xl +O) - aK(x7 an p(x)) d r ,  

where v(x) and p(x) are continuously differentiable functions defined on r. Then vlr = p and 
dV/dnl, = v. 

ProoJ Let u ( < )  E C4@) be a function with boundary values u(r = p and du/dnl,- = v. Then for 
any < E R u Tz", u satisfies 

r 

A<) ..(t) = - / Q(x, <P2u(x)  dQ + FL(0 + sL(<). 
R 

Putting w(<)  = u(<) - v(<), then obviously w( t )  E C4((n) and we have 

P(<) * ~ ( 5 )  = - 1 Q(x, < ) A 2 4 x )  dQ + sL(<) 
n 

= - K(x, <)Aw(x) dQ. (23 1 
The last equality is obtained by integration by parts. After applying the following integral identify for 
the Laplacian operator to (23) 

we have FL(<) = 0 or 

The left-hand side of (24) (denoted by D ( < ) )  is the potential of a double layer with density 
distribution W(X) on r, while the right-hand side (denoted by S(<))  is that of a single layer with density 
distribution (aw/an)(x) on r. Let to be an arbitrary point on r. By the jump discontinuity property of 
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the potential of a double layer, as t approaches to from the inside of r, 
D(t0) - $ 4 5 0 )  = S(t0) I 

and as t goes to to from the outside of r, 
D(50) +&(to) = S(tO), (26) 

since the potential of a single layer is continuous up to the boundary.I2 Therefore we conclude that 
w( t )  = 0 for all 5 E r from (25) and (26), since to is an arbitrary point on r. 

Finally, since the single-layer potential S ( 5 )  is identically zero in R U a', 

where Lta is the line through to along the outward normal to at lo E r. We have proved the 
assertion. 0 

value problems similar to (1). 
Using the lemma, we show that the variations 4 and $ are characterized as the solutions of boundary 

Theorem. 

Under assumptions A1 and A2 of Section 3 the first variation of the solution satisfies the boundary 
value problem 

and the second variation of the solution also satisfies the fourth-order elliptic boundary value problem 

Here IC is the curvature of r. 
ProoJ For the sake of simplicity we give the proof for the case where R C R,. For the general case 

where R @ Re the same conclusion can be obtained with slight modifications. The integral expressions 
for u(<)  E C4(fi) and u s ( ( )  E C4(R,), the solutions of the partial dierential equations (1) in domains 
R and R,, respectively, are formally given by 
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Subtracting (27) from (28), we have 

The second integral I; vanishes, since U, and u satisfy the same boundary conditions on T, and r 
respectively. Since Q c Q,, the first integral can be written as 

The second term in large parentheses can be written as a sum of line integrals along r using the 
following formula given in Reference 9 for w (x) E C2 ( Q, - 0) : 

W ( X )  dQ = E w ( x ) ~ ( x )  dT + E~ W(X)O(X) dT 
Jr 

+ -c2 ($(x) + ~ ( x )  p 2 ( x )  d r  + 0(~~), ) 1 
J,. -R Jr 

2 r  

where IC is the curvature of r is defined as positive when the curve r is convex to the domain. 
Rearranging I: in powers of E ,  we have 
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Substitution of (30) and (31) into (29) gives 

(x, t) + d ( x ,  t)Au(x) 

Since the left-hand side is expressed as E $ ( < )  + E ~ $ ( < )  + O ( E ~ )  for sufficiently small E ,  equating 
like powers of E on each side, we obtain the integral equation for the first variation 4 

and that for the second variation $, 

From the definitions of the first variation 
following equations under assumptions A1 and A2: 

and the second variation $ we observe that they satisfy the 

Substituting (34) into (32) and (33) and taking into consideration the lemma, we can see that the 
boundary values of the first variation of the solution are given by 

and those of the second variaton of the solution by 
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Since the Laplacian operator in (n,  s) co-ordinates (Figure 1) is written as “ a 8  A=-+JC-+- 
an2 an ds2’ 

the boundary conditions for u on rb(u = &/an = 0) reduce (35) to the conditions stated in the 
theorem. 

APPENDIX 11: PROOF OF EQUATION (9) 

Let us consider the following integral identify derived from integration by parts and &/as  = ICS:  

2 J I(., - UA~, - + 4uv4xy1 
R 

where n = (nl ,712) denotes the unit outward normal vector to r. Using the no-slip condition, we have 
on rb 

If we use the adjoint problem (9, then the second integral of (36) can be written as 

where L is the linear partial differential operator defined as 

Finally, since L 4  = 0, the first variation 6J(’) is given by 

We have proved the formula for the first variation. The expression for the second variation 6JJ(2) can be 
obtained by replacing 4 with $ in the above calculation and using the adjoint problem together with 
(5b, b’); the details are omitted. 
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