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SUMMARY

A discontinuous reproducing kernel element approximation is proposed in the case where weak dis-
continuity exists over an interface in the physical domain. The proposed method can effectively take
care of the discontinuity of the derivative by truncating the window function and global partition
polynomials. This new approximation keeps the advantage of both finite element methods and mesh-
free methods as in the reproducing kernel element method. The approximation has the interpolation
property if the support of the window function is contained in the union of the elements associated
with the corresponding node; therefore, the continuity of the primitive variables at nodes on the
interface is ensured. Furthermore, it is smooth on each subregion (or each material) separated by the
interface. The major advantage of the method is its simplicity in implementation and it is computa-
tionally efficient compared to other methods treating discontinuity. The convergence of the numerical
solution is validated through calculations of some material discontinuity problems. Copyright � 2005
John Wiley & Sons, Ltd.
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1. INTRODUCTION

A new class of methods such as the reproducing kernel element method (RKEM) [1–3] and
the moving particle finite element method (MPFEM) [4, 5] have been recently developed. The
methods in this class have the virtues of both finite element and meshfree approximations [6–9].
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In the RKEM, the continuous global partition polynomials constructed from each element are
patched over the whole domain [1–3]. For the localization of the global partition polynomials,
we adopt the reproducing kernel function such that the subsequent RKE shape function satisfies
the reproducing condition for the polynomials and possesses the interpolation property. By doing
so, the regularity of the RKE shape function is only determined by the kernel function. As
reported in Reference [2], the reproducing kernel element shape function has the Kronecker delta
property under certain restrictions on the support size of the kernel function. This interpolation
property can play an important role in enforcing the Dirichlet boundary condition in RKEM,
which is one of the good properties in a finite element approximation. For the convergence
of the numerical solution in the finite element method, Babus̆ka has proven the convergence
rate of h1/2 in the Sobolev space W 1

2 in the case when the interface does not fit with the
elements [10].

The regular meshfree method has to pay some cost to represent accurately discontinuous
derivatives on an interface. Several methods have been developed to enrich the meshfree approx-
imation by adding particular functions that contain discontinuities in the derivatives [11–13]
or by introducing jump conditions in the variational equations [14]. In References [15, 16],
weak discontinuities across an arbitrary interface are treated using the extended finite element
method (XFEM) satisfying partitions of unity. In this paper, we develop a new approximation
function with derivative discontinuity across the interface based on RKEM. The approximation
is said to be the discontinuous reproducing kernel element (DRKE) approximation and it is
achieved by cutting off the support of window function along the interface and the global
partition polynomials. Consequently, this yields the new partitions of unity affected by the
interface. The advantage of RKEM is maintained in the DRKE method. The proposed ap-
proximation method can be easily implemented and it can be applied to arbitrary material
interfaces.

The outline of the paper is as follows: in Section 2 the RKEM is revisited. Section 3
describes the DRKE approximation and its salient features are characterized. Numerical results
are shown in Section 4 to validate the reliability of the method. Conclusions for the method
are written in Section 5.

2. REVIEW OF RKEM

Let � ⊂ Rd (d = 1, 2, 3) be an open, bounded Lipschitz domain with its boundary ��. With
a set S, the symbols S̄ and S̊ represent the closure and the interior of the set S, respectively.
The open r-ball in Rd is denoted by Br(x) when its centre is located at x and the radius is r .

The closure of domain �, �̄ is decomposed into a set of closed subdomains {�n}Nn=1, which
satisfy the following conditions:

1. each �n is a closed set with non-empty interior,
2. �̄ = ⋃N

n=1 �n,
3. �̊i ∩ �̊j = ∅ for i �= j .

On each subdomain �n, we assume that there exists a linearly independent set of global par-
tition polynomials

{
�n, i(x)

}In

i=1 for some integer In � 1 and its corresponding nodes
{
xn, i

}In

i=1
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such that the following reproducing property of order k holds:

In∑
i=1

�n, i(x) x�
n, i = x�, x ∈ �̄, |�| � k (1)

In the RKEM, we note the continuous global partition polynomial is patched over the whole
domain and the compact reproducing kernel function is used to localize the global partition
polynomial such that the required reproducing conditions are satisfied. The (quasi-)interpolation
of a continuous function is proposed in Reference [2] as follows:

(
I �v

)
(x) ≡

N∑
n=1

[∫
�n

K�(y − x; x) dy
In∑

i=1
�n, i(x)v

(
xn, i

)] =
NP∑
I=1

�I (x)v (xI ) (2)

where K�(z; x) is a reproducing kernel function whose support is compact with respect to the
variable z and it is usually taken to be equal to B�(0). NP is the number of nodes on �̄ and
we have called �I (x) defined in (2) the reproducing kernel element shape function at node
xI . From now on, the minimum size of subdomains(or mesh) and the support size of window
function are denoted by h and �, respectively.

In this paper, the following function is adopted as a kernel function:

K�(y − x; x) = 1

�d
�

(
y − x

�

)
b(x) (3)

where the function �(x) is a continuous and non-negative window function with unit support
size. The b(x) function can be determined under the condition that I �1 = 1, which is equivalent
to the 0th reproducing condition. Hence, if S − x/� for a set S denotes the x-translated and
�-dilated set defined as

S − x
�

≡
{

y − x
�

∣∣∣∣ y ∈ S

}
(4)

then the correct kernel function in this case has the following form:

K�(y − x; x) = 1

�d

�(y − x/�)∫
(�−x/�)∩B1(0)

�(z) dz
(5)

If we define partitions of unity {�n(x)}Nn=1 such that

�n(x) ≡
∫
(�n−x/�)∩B1(0)

�(z) dz∫
(�−x/�)∩B1(0)

�(z) dz
(6)

then the approximation formula can be rewritten as follows [17]:
(
I �v

)
(x) =

N∑
n=1

[
�n(x)

In∑
i=1

�n, i(x)v
(
xn, i

)]
(7)
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Figure 1. Typical 2-D subdomain �n.

The salient features of the operator I � defined in (2) are addressed in Reference [2] such
that

• The operator reproduces the global partition polynomials if and only if it preserves the
unit function, i.e. I �1 = 1.

• The regularity of the shape function �I (x) is determined by the kernel function.
• Under the hypothesis that all shape functions are linearly independent in �, we have

�I (xJ ) = �I J or
(I �v

)
(xI ) = v (xI ) for a node xI , provided the support of the ker-

nel function in the first argument is contained in the union of all adjacent elements
at xI .

The systematic procedure to construct the global partition polynomial is given in References
[1, 3]. If a triangular element shown in Figure 1 is chosen as a subdomain, then the global
partition polynomials with the linear reproducing property can be constructed from (1) as
follows:




�n,1(x)

�n,2(x)

�n,3(x)


 =




(
x − xn,1

)(0,0) (
x − xn,2

)(0,0) (
x − xn,3

)(0,0)

(
x − xn,1

)(1,0) (
x − xn,2

)(1,0) (
x − xn,3

)(1,0)

(
x − xn,1

)(0,1) (
x − xn,2

)(0,1) (
x − xn,3

)(0,1)




−1 


1

0

0


 (8)

where we use the multi-index notations such that

z� ≡ z
�1
1 z

�2
2 when z = (z1, z2) ∈ R2, � = (

�1, �2
) ∈ N2 (9)

and hence
(
x − xn, i

)� for � = (0, 0), (1, 0), and (0, 1) is scalar. The global partition polynomial
exists as long as the area of the triangular subdomain is non-zero. It can be shown that the
global partition polynomials are identical to the finite element shape function inside the
subdomain/element for this case. Similarly, the global partition polynomials for a bilinear
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Figure 2. Comparison of shape function and its derivative in FEM and RKEM
(� = 0.75 h, 1.5 h): (a) shape functions; and (b) derivative of shape functions.

quadrilateral element as illustrated in Figure 1 can be shown to be




�n,1(x)

�n,2(x)

�n,3(x)

�n,4(x)


 =




(
x − xn,1

)(0,0) (
x − xn,2

)(0,0) (
x − xn,3

)(0,0) (
x − xn,4

)(0,0)

(
x − xn,1

)(1,0) (
x − xn,2

)(1,0) (
x − xn,3

)(1,0) (
x − xn,4

)(1,0)

(
x − xn,1

)(0,1) (
x − xn,2

)(0,1) (
x − xn,3

)(0,1) (
x − xn,4

)(0,1)

(
x − xn,1

)(1,1) (
x − xn,2

)(1,1) (
x − xn,3

)(1,1) (
x − xn,4

)(1,1)




−1 


1

0

0

0




(10)

where the term
(
x − xn, i

)(1,1) produces the bilinear global partition polynomial since we have(
x − xn, i

)(1,1) = (
x − xn, i

) (
y − yn, i

)
for each i =1, . . . , 4 in R2.

The comparison of the reproducing kernel element shape function to the corresponding finite
element shape function is depicted in Figure 2 for a 1-D linear uniform element together with
their corresponding derivative. Figure 2 clearly shows the unique properties of RKEM, i.e. the
presence of Kronecker delta condition and the high regularity of the shape function, which
depends on that of the window function.

3. TREATMENT OF DISCONTINUITY

The smooth approximation in meshfree methods leads to difficulties in representing derivative
discontinuities along an interface. Several methods have been proposed to enrich the meshfree
approximation by adding special functions that contain discontinuities in the derivatives [12–14].
However, by defining new partitions of unity due to restricting the window function on each
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subregion, we can achieve the approximation which has the derivative discontinuity along the
interface.

Let �S(x) be the characteristic function of S̄ if S is a set in Rd . For simplicity, assume
the interface � divides the considered domain � into two open subregions of �A and �B .
As a matter of fact, the subsequent procedure does not depend on the number of subregions.
Assuming the class of subdomains {�n}Nn=1 is made from the interface fitted triangulation so
that the interface is located at some edges of �n’s, we consider the following approximation
modified from the interpolation (7):

(
I�v

)
(x) =

N∑
n=1

[
��
n (x)

In∑
i=1

�n, i(x)v
(
xn, i

)] ≡
NP∑
I=1

��
I (x)v (xI ) (11)

where
{
��
n

}N

n=1 are modified partitions of unity defined as the following:

��
n (x) ≡

(∫
((�n∩�A)−x/�)∩B1(0)

�(z) dz
)

��A
(x) +

(∫
((�n∩�B)−x/�)∩B1(0)

�(z) dz
)

��B
(x)(∫

(�A−x/�)∩B1(0)
�(z) dz

)
��A

(x) +
(∫

(�B−x/�)∩B1(0)
�(z) dz

)
��B

(x)
(12)

The integral regions �n∩�A and �n∩�B in the above equation make the global partition
polynomials restricted to �A and �B , respectively, while the role of the characteristic functions
��A

(x) and ��B
(x) is to divide the whole domain into the subregions �A and �B and produce

new partitions of unity on each subregion.
If v(x) is a continuous function on �̄, then we can verify that the operator I� has the

following features as well:

• We have the following identity

(I�v
)
(x) =




(I �Av|�A

)
(x)��A

(x) + (I �B v|�B

)
(x)��B

(x), x /∈ �(I �A∪�B v
)
(x), x ∈ �

(13)

• At every point x ∈ � that is not a node, we have in general

lim
�̊A	y→x

(I�v
)
(y) �= lim

�̊B	y→x

(I�v
)
(y) (14)

However, if xI is a node on �, then
(I�v

)
(x) is continuous at xI whenever the support

of the kernel function at xI is contained in the union of all adjacent elements touching
the support.

• The limit of D
�
x

(I�v
)
(x)(|�| = 1) exists as the point x on each side of the interface

approaches a point on �. Furthermore, the approximation by the operator I� obviously
has a discontinuity of its derivative across the interface, which is our desired property.

• If the characteristic functions
{
��n

(x)
}

take the place of {�A, �B}, then this method
reduces to FEM.

We will call the approximation operator I� the DRKE operator on � and also
{
��

I (x)
}NP
n=1

will be called the DRKE shape functions. As shown in Figure 3, the interface is defined
by the common nodes belonging to the adjacent materials. The continuity of solution at the
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Figure 3. The concept of DRKE for 1-D case: the new partition of unity ��
n(x) = An(x)/A(x).
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Figure 4. 1-D Shape functions and their derivatives near the interface (x = 5): (a) DRKE shape
functions; and (b) derivative of DRKE shape function.

common nodes on the interface is satisfied due to the interpolation property of reproducing
kernel element shape function. Although there is a solution discrepancy for points between two
nodes, the convergence of interpolation on each subregion makes the discrepancy decrease as
the discretization along the interface becomes fine.

To figure out the scheme to treat discontinuity, first we consider the case of a 1-D interface
problem as shown in Figure 3. The nodes numbered from 0 to 5 belong to material A, and
the nodes numbered from 5 to 10 belong to material B. The common node 5 on the interface
belongs to both materials A and B. The DRKE shape function and its derivative are also shown
in Figure 4 under the situation of derivative discontinuity at the common node 5.

On the other hand, to calculate the derivative of shape functions in the discrete reproducing
kernel element approximation, we need the following derivative formula for the integral of
compactly supported and continuous function in Rd over the translating domain S(x) ≡ S0 − x

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 63:241–255
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for x ∈ Rd , i.e. if �(z) ∈ C0
(
Rd

)
and supp �⊂B1(0), then we have

D
�
x

(∫
S(x)∩B1(0)

�(z) dz
)

=
∫

�S(x)∩B1(0)

(� · n)�(z) d�, |�| = 1 (15)

where d� represents the length(or surface) Lebesque measure. It suffices to derive the first-
order derivatives of the modified partition of unity ��

n (x) for each nth subdomain in (12) in
order to calculate D�I�v(x) for |�| = 1. Therefore, from formula (15), we have the following
derivatives for any x ∈ �\�:

D���
n(x) = 1

�

[
V �A

n (x)��A
(x)+V �B

n (x) ��B
(x)

VA(x)��A
(x)+VB(x)��B

(x)
− VA

n (x)V �A(x)��A
(x)+VB

n (x)V �B(x)��B
(x)

VA(x)2��A
(x)+VB(x)2��B

(x)

]

(16)

where the functions appearing in the above equation are defined as follows:

V A(x) ≡
∫

(�A−x/�)∩B1(0)

�(z) dz

V B(x) ≡
∫

(�B−x/�)∩B1(0)

�(z) dz

V A
n (x) ≡

∫
((�n∩�A)−x/�)∩B1(0)

�(z) dz

V B
n (x) ≡

∫
((�n∩�B)−x/�)∩B1(0)

�(z) dz

V �A(x) ≡
∫

�(�A−x/�)∩B1(0)

(� · n)�(z) d�

V �B(x) ≡
∫

�(�B−x/�)∩B1(0)

(� · n)�(z) d�

V �A
n (x) ≡

∫
�((�n∩�A)−x/�)∩B1(0)

(� · n)�(z) d�

V �B
n (x) ≡

∫
�((�n∩�B)−x/�)∩B1(0)

(� · n)�(z) d�

where the symbol �(·) means the boundary of the domain in (·). Since a Galerkin method
is adopted to solve the elastic problems with derivative discontinuities, the calculations of the
first-order derivatives are enough.

A two-dimensional domain composed of contacting two materials A and B is discretized with
a triangular mesh as shown in Figure 5. The RKE and the DRKE shape function in the radial
direction passing through the node xI and the interfacial direction from the node xI to the
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Figure 5. Triangulation along the interface in 2-D.
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Figure 6. Sectional view of DRKE shape function ��
I (x) in 2-D: (a) radial section through xI ; and

(b) interfacial section from xI to xJ .

node xJ about the interface are depicted in Figure 6, respectively. As we anticipated, although
the deviations of the DRKE shape function values across the interface take place between
nodes, the shape function has the continuity property at all nodes on the interface since it has
the Kronecker delta property. On each material domain, we have proved the convergence for
the RKE interpolation (see Reference [2]) and, from the property (13) of the operator I�, the
difference value of the shape function approaches zero as the mesh size h goes to zero.

The radial section view of derivatives of the DRKE shape function passing across xI is
shown in Figure 7. To clarify the derivative jumps of DRKE shape function on the interface,
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Figure 8. Derivatives of shape function ��
I (x) on the interfacial section from xI to xJ :

(a) D(1,0)��
I (x); and (b) D(0,1)��

I (x).

Figure 8 shows the interfacial section view of the derivative of DRKE shape functions. In the
figure, the derivative jump of the shape function is clearly seen on the interface. In general,
the derivative values of DRKE shape function on both sides of the interface are different from
each other as can be seen in the figure.
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E 1
E 2

5

10

Figure 9. One-dimensional bi-material rod.

4. NUMERICAL EXAMPLES

4.1. One-dimensional bi-material rod

A one-dimensional elastic bi-material rod as shown in Figure 9 is subjected to body force
b(x) = x. The elastic moduli of the two materials are taken such that E1 = 1 and E2 = 0.5,
respectively. Then, this problem has the solution with derivative discontinuity at the material
interface and the analytic solution of this problem is known to be the following:

u(x) =




1

E1

(
CE2x − x3

6

)
, x<5

C(x − 10) + 1

6E2

(
1000 − x3) + 1, x � 5

(17)

where C = (6E1 × E2 + 875 E1 + 125 E2)/(30 E2 (E1 + E2)).
The problem is solved by using FEM and DRKEM with linear consistency. Let h>0 be the

minimum distance among nodes. The convergence rates of numerical solution in displacement
and derivative are illustrated in Figures 10(a) and (b) for FEM and DRKEM. The same
convergence rate can be observed; however, the solution of DRKEM with support size h is
more accurate than that of FEM. A continuous solution in derivative except on the material
interface is obtained in DRKEM as shown in Figure 11.

4.2. Inclusion in an infinite plate

The problem of a cylindrical material inclusion with a constant eigenstrain 	∗ embedded in an
infinite plate as shown in Figure 12 is considered. The exact solution of the displacement for
this problem can be shown to be

ur =



C1r, r<R

C1
R2

r
, r �R

(18)
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Figure 10. Comparison of convergence rate for the bi-material problem in FEM and DRKEM:
(a) convergence rate in primary variable; and (b) convergence rate in the derivative.
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Figure 11. Comparison of strain in FEM and DRKEM.

and the corresponding strain fields are represented as follows:

	rr =




C1, r<R

−C1
R2

r2 , r �R
(19)
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Figure 12. Inclusion in an infinite plate.

0 1 2 3 4 5
0

1

2

3

4

5

(a) (b) (c)

Figure 13. Discretizations of the circular inclusion problem: (a) 85 nodes with 5 nodes on the interface;
(b) 357 nodes with 9 nodes on the interface; and (c) 1317 nodes with 17 nodes on the interface.

	

 =




C1, r<R

C1
R2

r2 , r �R
(20)

where C1 = (
(�1 + �1)/(�1 + �1 + �2)

)
	∗.

For convenience, R = 1 is chosen to be the radius of inclusion and �i (i = 1, 2) is the Lamé
constant for the subdomain �i (i = 1, 2): �1 = 497.16, �1 = 390.63 and �2 = 656.79, �2 = 338.35
for subregions �1 and �2, respectively. The eigenstrain is set to be 0.01. Due to the symmetry of
the problem, the first quadrant of the domain with dimension [0, 5] × [0, 5] is triangulated with

85, 357 and 1317 nodes as shown in Figure 13. Induced displacement boundary conditions from
analytical solution are imposed on the top and right boundaries, and the symmetry conditions
on the artificial boundaries, the bottom and the left, are imposed.
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Figure 14. Comparison of convergence rates for the inclusion problem in FEM and DRKEM:
(a) convergence rate in primary variable; and (b) convergence rate in the derivative.
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Figure 15. Comparison of strain in FEM and DRKEM: (a) hoop strain; and (b) radial strain.

The numerical example shows that the derivative discontinuity can be effectively treated in
DRKEM by controlling the influence domain of the node along the interface. The convergence
rate of the numerical solution in the primary variable and in the derivative is shown in Figure 14
for FEM and DRKEM. In this case, the finite element edges coincide with the interface when
calculating the numerical solution in FEM. The hoop and radial strains obtained by FEM and
DRKEM are compared in Figure 15 for the fine mesh with 1317 nodes.

5. CONCLUSIONS

A new method of treating the discontinuity is proposed in this paper based on the RKEM.
By restricting the support of the window function and the subdomains on every subregion
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separated by the interface, the global partition polynomials and the partitions of unity are
obtained. As a result, we obtain an approximation defined on the whole domain with derivative
jump along the interface. The conditions for displacement continuity along the interface are
satisfied due to the interpolation property on each subregion. The approximation proposed in
this paper is useful particularly in solving problem involving moving interfaces. Moreover, it
is naturally conforming. Thus, the re-meshing procedure can be greatly simplified compared to
other methods in which the conforming mesh is essential.
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