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Moving boundary takes place frequently in electric devices such as circuit breakers. The computational domain for quasi-static
electric field caused by moving boundaries that change in time and accordingly it is important to be able to continuously construct
the spacial discretization in an efficient way for accurate calculation. The axial Green function method must be available for this
kind of problems. The benefit for this selection lies in the easier way to construct axial lines in complicated domains compared to
grid or mesh generator in FDM or FEM. Not only the automatic axial line generation is fast and easy to implement but also it
is efficient because we can generate them individually and independently in each subdomain into which the whole computational
domain is partitioned.

Index Terms—Moving boundary, circuit breaker, axial line generator, axial Green function method.

I. INTRODUCTION

ELectric fields in a domain with moving boundaries can be
viewed as quasi-static field when the speed of the moving

boundary is low enough compared to the electromagnetic wave
speed scale. The axisymmetric circuit breaker illustrated in
Fig. 1 yields the complicated computational domain which
consists of regions of grey colors and the shield of green color.
In real situation, the nozzle and arcing contacts, on which we
have V = 100 as an enforced voltage, move leftward. Instead,
for simplicity, we make the fixed arcing contact boundary
moving right, which is located at the axis of rotation (dotted
line) and on which we put V = 0. In addition, the shield (green
region) and the enclosure isolated in the light grey region
are also moving right at the same speed. On the enclosure,
we also have V = 0 as the boundary voltage. The other

Fig. 1. Circuit breaker with boundaries moving: the moving boundaries are
the fixed arcing contact (V = 0) at the axis of rotation (dotted line), the
enclosure (V = 0) hollow in the middle, and the shield (slim green region).
There are two fixed dotted-polygonal regions at the bottom and the middle,
respectively, which contains moving parts, the arcing contact(bottom) and the
enclosure hollow including the shield(middle).

relevant boundary conditions and permittivities are shown in
Fig. 1 in detail. The emphasis in this paper is laid on how
we calculate the quasi-static electric field efficiently in the
varying domain triggered by the moving boundaries. For this
purpose, we apply the axial Green function method(AGM)
to this moving boundary problem. AGMs developed so far
has turned out to be successful in accurate computation of
the axisymmetric electromagnetic fields [1] in complicated
domains with different permittivities and Neumann boundaries

[2]. The aim of AGM is to solve some sort of physically im-
portant problems governed by partial differential equations in
complicated domains using one-dimensional Green functions,
for instance, the general elliptic equation, the Stokes flow[3],
and the convection-dominated diffusion equation[4]. AGMs
use the axial lines as a discrete skeleton like grid or mesh in
FDM or FEM. One more thing to emphasize is that arbitrary
refinements of axial lines are available in AGMs. In this paper,
since moving boundary is the keyword, we focus on how
to automatically generate the axial lines in a computational
domain of AGM. Indeed, the electric field computation of
the circuit breaker is inevitable for its optimal design. As
an application to this, we investigate the reliability on a gas
circuit breaker based on the AGM solutions for the quasi-static
electric field resulting from the moving boundaries.

II. AXIAL LINE GENERATOR

Since AGM for quasi-static solutions of the moving bound-
ary problem needs to generate the axial lines automatically
and efficiently as well, it is necessary to implement the
refined axial lines independently and individually in specified
subdomains, particularly in the subdomains containing moving
boundaries. In our case, around the fixed arcing contact
boundary on the axis of rotation, the enclosure, and the
shield, we install three rectangular subregions to which the
moving regions entirely belong. In AGMs, the axial lines can
be independently generated in each subregion[2]. In fact, it
becomes an extraordinary advantage in numerical methods
without doubt. Let Ω be a schematic computational domain in
2D as illustrated in Fig. 2. Each boundary Γ(i) of Ω is defined
as a set of ordered points x

(i)
k for k = 0, 1, · · · , n together

with the straight line segments x
(i)
k−1x

(i)
k for k = 1, · · · , n.

We call x(i)
k−1x

(i)
k the boundary segment. It means that the line

segments defining a boundary of the domain have a consistent
orientation, i.e., Γ(1) is counterclockwise whereas Γ(2),(3) is
clockwise in Fig. 2. At first, we take a bounding box of the
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Fig. 2. Schematic diagram for axial line generator: Ω is a domain inside
Γ(1) and outside Γ(2),(3) where Γ(i) is the boundaries of Ω, and Γbox is a
bounding box(dotted rectangular box) taken so as to contain Ω. x(i)

k−1x
(i)
k

is a straight line segment called the boundary segment defining discrete
boundaries.

entire domain Ω which is denoted by Γbox as shown in Fig.
2. Assume that the coordinates xi’s and yj’s are placed along
the horizontal and vertical sides of the bounding box Γbox,
respectively. Each line segment belonging to the rectangular
domain bounded by Γbox whose x-coordinate(or y-coordinate)
is xi(or yj) is denoted by Ȳ xi (or X̄yj ). All we need to generate
axial lines begins with finding its intersection points with all
boundaries, the black dots on the boundaries as shown in Fig.
2, to obtain the maximal axial lines like the blue line and the
red line in Fig. 2.
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Fig. 3. Basic algorithm to find the boundary points intersecting with a given
line segment x−x+ inside Γbox.

The key algorithm to do this is to efficiently find these
intersecting points. We consider the 2D case first. Assume
that L(i)

k ≡ x
(i)
k−1x

(i)
k stands for the k-th boundary segment

of Γ(i) with unit normal vector n and x−x+ is a given line
segment which will be replaced with Ȳ xi or X̄yi . Define the
unit vector q,

q =
x+ − x−

‖x+ − x−‖ , (1)

and we can obtain the orthogonal projector onto the hyperplane
Π passing through the origin in 2D, which is perpendicular to
the vector q, such that

PΠ = I − qqT , (2)

where I is 2×2 identity matrix, q is viewed as 2×1 matrix, and
qT is the transpose of q. Therefore, PΠ is 2×2 matrix in 2D
case. In order to calculate the intersection point x̃ between L(i)

k

and x−x+ in Fig. 3(a), the first thing that we have to know
is whether they meet or not. This can be done by investigating
the two images, y(i)

k−1 ≡ x
(i)
k−1 − x− and y

(i)
k ≡ x

(i)
k − x−.

The image line segment y(i)
k−1y

(i)
k contains the origin 0 if and

only if the extended line of x−x+ in the direction of q always
meets the line segment L(i)

k at some point x̂. At this moment,
we introduce the following useful fact whose proof is done in
Appendix A.
Lemma. Assume that ai is m-dimensional vector for i =
1, 2, · · · , n. Then, ‖a1+·+an‖ = ‖a1‖+· · ·+‖an‖ if and only
if ai = γi

∑n
j=1 aj for γi ≥ 0 satisfying γ1 + · · ·+ γn = 1.

Either one of the following can occur:
1) ‖y(i)

k − y
(i)
k−1‖ < ‖y

(i)
k ‖+ ‖y(i)

k−1‖,
2) ‖y(i)

k − y
(i)
k−1‖ = ‖y(i)

k ‖+ ‖y(i)
k−1‖ > 0,

3) ‖y(i)
k ‖ = ‖y(i)

k−1‖ = 0.

The statement of 1) above is equivalent to the fact that the
origin 0 does not belong to the line segment y(i)

k−1y
(i)
k . This

implies that, in case of 1), there is no such x̂. In case of 2),
however, there exists unique x̂ which is represented as follows
using the Lemma above and similarity due to the orthogonal
projection:

x̂ =
lk
l
x

(i)
k−1 +

lk−1

l
x

(i)
k , (3)

where lk−1 = ‖y(i)
k−1‖, lk = ‖y(i)

k ‖, and l = lk−1 + lk > 0.
However, it should be noted that x̂ cannot be the point x̃
in Fig. 3(a) unless x̂ is placed on the line segment x−x+.
Therefore, we have to check out the following index

α =
(x̂− x−) • q
‖x+ − x−‖ . (4)

If 0 ≤ α ≤ 1, then we can conclude that x̂ is the unique
intersecting point, i.e., x̃ = x̂. In case of 3), L(i)

k entirely
belongs to x−x+, so that we skip this case, i.e., do nothing
in this case. Lastly, we attach a tag at every boundary point x̃

Fig. 4. The boundary points and the corresponding maximal axial lines in Ω
calculated by the axial line generator.

by calculating β = q • n which is not zero in case of 2). For
example, if β < 0, then x̃ has ′+′ as a tag. Otherwise(β < 0),
we assign ′−′ to x̃. The tags, ′+′ and ′−′, mean inward-the-
domain and outward-the-domain, respectively. Accordingly,
for a given x−x+, find all intersecting points x̃ with all the
boundary segments and the line segment from the ′+′-tagged
to the consecutive ′−′-tagged x̃ becomes an maximal axial
line we want to generate as seen in Fig. 2. Practically, it is
more efficient to sort all the found boundary points on x−x+

with respect to the value α’s. With this procedure described
so far, we generate uniformly distributed axial lines illustrated
in Fig. 4 on the domain drawn in Fig. 2.

On the other hand, in case of 3D as in Fig. 2(b), all
boundaries can be described in terms of a set of oriented



triangles endowed with unit outward normal vectors n. Similar
to (2), we consider the orthogonal projector PΠ onto the hyper
surface Π containing the origin 0 and orthogonal to the unit
vector q made from (1) in 3D. The projected image of the k-th
triangle Tk on (i)-th boundary with vertices, x(i)

k,1, x(i)
k,2, and

x
(i)
k,3, under the orthogonal projector PΠ becomes a triangle TΠ

k

on Π with vertices, y(i)
k,s ≡ PΠ(x

(i)
k,s−x−) for s = 1, 2, 3. We

call this TΠ
k the projected triangle of Tk on Π. Analogously,

the origin 0 is contained inTΠ
k if and only if the extended line

of x−x+ in the direction of q always meets the triangle Tk
at some point x̂. In 3D, either the following inequality holds:

‖y(i)
k,1 × y

(i)
k,2 + y

(i)
k,2 × y

(i)
k,3 + y

(i)
k,3 × y

(i)
k,1‖

< ‖y(i)
k,1 × y

(i)
k,2‖+ ‖y(i)

k,2 × y
(i)
k,3‖+ ‖y(i)

k,3 × y
(i)
k,1‖, (5)

or

‖y(i)
k,1 × y

(i)
k,2 + y

(i)
k,2 × y

(i)
k,3 + y

(i)
k,3 × y

(i)
k,1‖

= ‖y(i)
k,1 × y

(i)
k,2‖+ ‖y(i)

k,2 × y
(i)
k,3‖+ ‖y(i)

k,3 × y
(i)
k,1‖ > 0, (6)

unless

‖y(i)
k,1 × y

(i)
k,2‖+ ‖y(i)

k,2 × y
(i)
k,3‖+ ‖y(i)

k,3 × y
(i)
k,1‖ = 0. (7)

Here, it is worth noting that the left hand side of (5) or (6) is
the area of the projected triangle TΠ

k by means of the identity

‖(y(i)
k,2 − y

(i)
k,1)× (y

(i)
k,3 − y

(i)
k,1)‖

= ‖y(i)
k,1 × y

(i)
k,2 + y

(i)
k,2 × y

(i)
k,3 + y

(i)
k,3 × y

(i)
k,1‖. (8)

Among three cases (5)-(7), only the case of (6) has the unique
intersecting point x̂ between TΠ

k and the extended line of
x−x+ since 0 ∈ TΠ

k and the area of TΠ
k is not zero from

(6) and (8). Applying the Lemma to the case of (6), the point
x̂ is calculated in the following form,

x̂ =
S1

S
x

(i)
k,1 +

S2

S
x

(i)
k,2 +

S3

S
x

(i)
k,3, (9)

where S1 = 1
2‖y

(i)
k,2 × y

(i)
k,3‖, S2 = 1

2‖y
(i)
k,3 × y

(i)
k,1‖, S3 =

1
2‖y

(i)
k,1×y

(i)
k,2‖, and S is the area of the projected triangle TΠ

k

and S = S1 +S2 +S3 > 0. In order that x̃ = x̂, we again use
(4) to determine whether 0 ≤ α ≤ 1 or not as done in 2D.

After finding all boundary points intersecting with every
X̄yj and Ȳ xi using the above strategy, we search all cross
points between them on every maximal axial line generated.
The procedure in the above can be systematically conducted in
both 2D and 3D. The detailed calculations are much easier and
simpler than those in the grid or mesh generations of FDM or
FEM. Therefore, the auto-axial line generator is made based on
these processes and applied directly to the moving boundary
problem in this paper.

III. CIRCUIT BREAKER WITH MOVING BOUNDARIES

Since AGM for quasi-static solutions of the moving bound-
ary problem in a circuit breaker needs to generate the axial
lines automatically and efficiently as well, it is necessary to
regenerate the axial lines at each time independently and in-
dividually in two fixed dotted-polygonal regions at the bottom
and the middle of Fig. 1. These regions cover the fixed arcing

contact boundary on the axis of rotation and the enclosure
together with the shield whose zoomed-in parts are depicted
at the bottom and top panels, respectively, in Fig. 5. Axial line

Fig. 5. At time t = 0.007[sec] as a representative, axial lines generated in
two fixed regions with moving boundaries inside. The moving speed of the
moving parts is assumed to be 4[m/sec]. Each of three panels consists of two
specified regions, upper region(the enclosure together with the shield) and
lower region(the fixed arcing contact).

construction in the entire domain at each time is also available
but it must be more time consuming than the strategy we
employ here. The strategy specifying two regions for moving
boundaries is more efficient because we can use a fixed axial
lines generated at the beginning on the complement domain
except two regions. The axial lines individually generated on
the two specified regions may be non-matching to the fixed
axial lines on the complement domain along the contacting
boundaries, but it can be solved by the method proposed in [2].
We assume that the constant speed of moving parts is 4[m/sec].

Fig. 6. Axisymmetric electric potential at time t = 0.007 as the specified
boundaries move right in a constant speed 4[m/sec].

We take 50 moving slots from the initially given configuration
(t = 0). As a result of generating axial lines and computing
the potentials, the total number of cross points about axial
lines ranges from 126,401 to 127,439, and about 15 minutes
are elapsed for all the 50 slots. The calculated potential when
t = 0.007[sec] is shown in Fig. 6 on the axial lines generated
in the manner of Fig. 5. Of interest are the spots where
the highest gradients of the potentials happen at different
position as the moving boundaries move right. The maximum
electric field intensities when t = 0, 0.007, 0.014 take place at
(0.3100 × 10−1, 0.1000 × 10−1), (0.3400 × 10−1, 0.9481 ×
10−2), and (0.6300 × 10−1, 0.9766 × 10−2), respectively,
on the arcing contact. The corresponding maximum electric
strengths are calculated to be 0.2870×106, 0.5836×105, and
0.9550×104, respectively. These results are fully attributed to
the easy and fast auto-axial-line generator as proposed in the
previous section.

IV. ANALYSIS OF CAPACITIVE CURRENT INTERRUPTING
PERFORMANCE OF GCB

SF6 gas circuit breakers(GCB) are widely installed in
high voltage power networks because of high dielectric per-
formance and powerful interrupting capability. One of the



most important duties of a circuit breaker is the capacitive
current interruption [5]. If the fault accident occurs, the
electric contacts are separated after current interruption and the
transient recovery voltage(TRV) is applied between the contact
electrodes. If the withstanding voltage is higher than TRV,
then circuit breaker successfully clears the fault condition.
However, in the opposite case, a dielectric breakdown occurs
and circuit breaker fails to interrupt the fault condition. The
withstanding voltage Vbd is a function of the gas pressure(or
density) and electric field intensity:

Vbd = a
ρb

E
, (10)

where E is the local electric field intensity, ρ is the gas
density, and we take b = 0.7 while a is a secure scaling factor
depending on the circuit breaker shape. To know ρ and E

Fig. 7. The SF6 density ρ when electrode escapes from the nozzle region.

in (10), we have to calculate the transient variation of these
values with respect to the moving boundaries. The former is
calculated with FVM[6] and the latter is computed with the
AGM equipped with axial line generator. Fig. 7 shows ρ

Fig. 8. Comparison of TRV (Vtrv) and withstanding voltage (Vbd).

when the electrode or arcing contact is just pulling out the
nozzle throat. Fig. 8 shows the comparison of the TRV and
withstanding voltage Vbd which is calculate by (10), in which
Vbd forms greater than TRV. This means that the current GCB
model can endure the dielectric stress caused by TRV and thus
we can predict successful interruption.

V. CONCLUSION

The axial line generating is so easy that we can calculate
the electromagnetic fields in complicated domains and even in
moving boundary problems like circuit breaker. In 3D, this is
very strong advantage compared to other methods like finite
difference methods, finite elements methods, etc. In practice,
axial lines of good quality are automatically generated so as
to solve problems in arbitrary domain. If we know the moving
region in advance, then it is more convenient to generate axial
lines for computing the moving boundary problems. By just

updating the new axial lines only in the bounding box of the
moving subdomain that we know a priory, we can save time
for computing. Therefore, generating axial lines at each time
is not a burden for the moving boundary problems any more
if using the Axial Green function Methods. Practically, based
on the accurate AGM solutions for the quasi-static electric
fields under the moving boundaries in a gas circuit breaker
model, the withstanding voltage can be successfully calculated
to investigate its durability.

APPENDIX A
PROOF OF LEMMA

It is obvious that if ai = γi
∑n
j=1 aj for γi ≥ 0 satisfying

γ1 + · · ·+ γn = 1, then ‖a1 + ·+ an‖ = ‖a1‖+ · · ·+ ‖an‖.
For the proof of sufficiency, we prove the Lemma by using the
mathematical induction. First, we assume that ‖a1 + a2‖ =
‖a1‖ + ‖a2‖. Then, squaring both sides gives the identity
a1 • a2 = ‖a1‖ ‖a2‖. This means that a1 = γ a2 for some
γ ≥ 0 if ‖a2‖ ≥ ‖a1‖. Therefore, we can conclude that
a2 = 1

1+γ (a1 + a2) and a1 = γ
1+γ (a1 + a2). Next, we

assume that the sufficiency is true in case of n− 1 members.
For n members, we have to prove the sufficiency. Under the
assumption that

‖ai + · · ·+ an‖ = ‖ai‖+ · · ·+ ‖an‖, (11)

we observe the following relationships for any i = 1, · · · , n:

‖ai + · · ·+ an‖ = ‖ai +

n∑
j 6=i

aj‖ ≤ ‖ai‖+ ‖
n∑
j 6=i

aj‖

≤ ‖ai‖+

n∑
j 6=i

‖aj‖ = ‖ai + · · ·+ an‖, (12)

where the last equality comes from our assumption. In fact,
since the second inequality in (12) must be equality, we have
ai = γi (a1 + · · ·+ an) for some γi ≥ 0,

∑n
k 6=i ak = γ̂ (a1 +

· · · + an) for some γ̂ ≥ 0, and γi + γ̂ = 1, applying two
member case. Therefore, from the assumption for n members,
we can conclude that γ1 + · · ·+ γn = 1. The proof is done.
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