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Point Collocation Method Based on the FMLSRK
Approximation for Electromagnetic Field Analysis

Do Wan Kim and Hong-Kyu Kim

Abstract—This paper presents the methodology of a mesh-free
point collocation method and its application to the electromagnetic
field computation. The special emphasis in this paper is on a point
collocation scheme based on the fast moving least square repro-
ducing kernel(FMLSRK) method with a variable dilation function.
The concept of dilation function is newly introduced here, and we
combine it with the conventional FMLSRK method. They yield
the FMLSRK approximation operators. In the point collocation
method using such an extended FMLSRK method, there is no need
to construct integration cells, and any type of boundary conditions
can be directly enforced. Numerical simulations for a two–dimen-
sional (2-D) electromagnetic field on complicated geometry are car-
ried out to validate the reliability of proposed method, in which the
dilation function plays an essential role.

Index Terms—Dilation function, electromagnetic field, extended
FMLSRK, point collocation.

I. INTRODUCTION

SEVERAL kinds of meshfree point collocation methods
have been successfully applied to the analysis of the

mechanical problems [1]–[3]. The shape functions in many
mesh-free methods are derived from the moving least square
reproducing kernel(MLSRK) approximation [4], [5]. Although
almost all kinds of meshfree methods including MLSRK
method have been developed extensively as potential method-
ologies, there are two important problems that still need
improvement. One is to reduce the computational cost of
the derivatives of shape functions, and the other is to allow
the dilation parameter to vary not only at nodes but also at
the other points with the consistency conditions that are still
satisfied. As a solution for the former, we will take the fast
moving least square reproducing kernel (FMLSRK) method
[6], and for the latter, the notion of a dilation function will be
newly introduced, where the name of dilation function comes
from the varying dilation parameter mentioned above. Then,
combining the dilation function with the FMLSRK method, we
can propose the extended fast moving least square reproducing
kernel method. For completeness of the paper, constructing the
dilation function should be included.

Last, the point collocation method based on the extended
FMLSRK method is presented. Since point collocation methods
attack the strong form of the governing equations in general, fast
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calculations of higher order derivatives of shape functions are
needed in discretization. Furthermore, since singular behaviors
of the solution may take place on a complicated geometry, the ir-
regular node distributions are essential for an accurate solution.
From those reasons, the extended FMLSRK method is suitable
to the point collocation method, which produces the approxi-
mate derivatives of shape functions instead of real derivatives.

Besides easy discretization of the governing equation, the
salient feature among the merits of point collocation methods
is flexibility in implementing boundary conditions. Because
the shape functions do not have the Kronecker delta condition,
special treatment for the boundary conditions is required, for
example, using the D’Alembert principle or the Lagrange
multiplier method is typical. However, in the point collocation
method, roughly speaking, any kind of boundary conditions
can be directly enforced theoretically.

By some numerical experiments, the rate of convergence and
the accuracy of the method are shown, and we perform the nu-
merical computation of the electric potential on a complicated
geometry in which a geometric singularity is located.

II. EXTENDED FAST MOVING LEAST SQUARE REPRODUCING

KERNEL METHOD

Let be a bounded domain in , and let
be a set of distributed nodes in . Throughout

the paper, multi-index notations and related definitions are em-
ployed as follows:

where ’s are non-negative integers, and is called the multi-
index. We first consider the vector of complete basis polyno-
mials in up to order such that

(1)

where ’s are all multi-indexes in lexicographical order.
Let be the -ball in with center

. We introduce the continuous non-negative window function
with its support on of the type

for

and the continuous positive dilation function

on
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From now on, we use brief notation instead of if there
is no confusion. The support of the window function has the
shape of -dimensional unit ball. The dilation parameter com-
monly used in most meshfree methods is about to be replaced
with the dilation function . Here we note that the continuity
of the dilation function is enough to combine the dilation func-
tion with the FMLSRK method.

We assume that is chosen such that the number of nodes
contained in is greater than . The construction of such

will be addressed in Section III. With the window function
and such dilation function , we find the vector a to min-

imize the following weighted square functional at

(2)
where is a continuous function defined in , and

. Then, the minimizer
should be a function of and , and we can make the following
approximation operators for by limiting process:

As a matter of fact, the operators ’s are linear in .
We call the operator the th FMLSRK oper-
ator with respect to .

Suppose is a set of con-
tinuous functions. We define the following functions:

Then, the functions result in the solutions of the
following equations:

...

(3)
where is called the moment matrix and is defined such
that

(4)
We call the function , the th shape function asso-

ciated with the window function and the dilation function
or, briefly, call it the th shape function if no confusion arises.
The following properties of the th FMLSRK operator can be
justified by slight modification of the proof in the literature [6].

1) (Generalized th-Order Consistency) The th FMLSRK
operator is exactly same as the differential oper-
ator on the polynomial space up to order , i.e.,

(5)

whenever is a polynomial of order up to .

2) (Truncation Error between and ) Assume the
window function and ,
where is a bounded open convex set in . If there
exist the node set and its corresponding to satisfy
the following estimate when :

for some constant independent of , where is
the number of nodes contained in and and
satisfy , then the following estimate holds
for and some constant independent of :

(6)

where .

These properties tell us that the th FMLSRK operator
is a good approximation of the derivative .

III. CONSTRUCTION OF CONTINUOUS DILATION FUNCTION

We start with rough explanation of the idea to construct the
continuous dilation function for each point. Initially, choose
tentative probe ball , which contains sufficiently many

of nodes, say . Then, we define
the continuous pseudo-density function of nodes that are
contained in at each field point . The reciprocal of
the density function corresponds to the occupying av-
erage pseudo-volume per one node in the ball. Now, we choose
the desired number , of
nodes that hopefully belonging to the ball . Note that

is required for the invertibility of the
moment matrix for suitably distributed nodes. For stable , we
usually take for some .
Finally, we determine so that the volume of is equal
to . The following are the details of the construction
of .

Let be the set of nodes, let be a field point in , and
define . The probe radius is
chosen by the average distance between and

Let us define the following pseudo-counting function:

where is a continuous cut-off function. If is the
characteristic function, is the exact counting function.
Using the exact counting function, it may not be continuous.
Hence, in this paper, we choose as the following for some

, :

when

when

otherwise.
(7)
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We consider the density function of nodes at , which is
defined as the following:

(8)

where is the volume of the -dimensional unit ball, i.e.,
. Note that the reciprocal is inter-

preted as the average occupying volume per node in . For
the enhancement of accuracy for the density function, the fol-
lowing multiprobing is desirable:

(9)

where is the number of probing step.
Choose as the desirable number of nodes that are con-

tained in . Now, we define the value of the dilation func-
tion at each field point as follows:

(10)

Although we use the parameters , , and
frequently throughout the paper, we may have a chance to alter
these parameters when the node distribution is highly irregular.
In Fig. 1, we see that the support of the shape function and the ra-
dial support of the window function at nodes are different when
we use concentrated nodes. This does not happen for the case
of constant dilation function. At each point , the dilation func-
tion determines nodes that contribute to the value of shape
function. In fact, the support of the shape function at each node

is determined in terms of

supp (11)

Fig. 1 explains above rule determining the support of shape
function. In Fig. 1, the 0th shape function is plotted with level
curves of the dilation function (normal curves), as proposed in
this section. From Fig. 1, we can deduce the intuitive form of the
shape function. It is more stiff in the direction of more nodes.
Since we designed the dilation function so that each ball
contains almost the same number of nodes, and the example
node set is not concentrated along the boundary, we see a higher
level set of dilation functions along the boundary than that of the
center in Fig. 2.

IV. POINT COLLOCATION SCHEME BASED

ON THE FMLSRK OPERATORS

We will propose a point collocation scheme based on the
FMLSRK operators. In order to obtain the mesh-free numer-
ical solution of a partial differential equation, we approximate
the partial differential operators in the differential equations in
terms of the FMLSRK operators. For example, we assume that
the following type of Poisson problem is given:

on (12)

on (13)

on (14)

Fig. 1. Comparison between the support of 0th shape function and that of the
window function (bold circle).

Fig. 2. Plots of the 0th shape function and dilation.

where , and . Using the FMLSRK
operators, it can be translated into the following point colloca-
tion approximation:

on (15)

on (16)

on (17)

where , and , , and are sets of inte-
rior nodes, Dirichlet boundary nodes, and Neumann boundary
nodes, respectively. Here, is the outward unit normal vector
at . The truncation error is of order . Thus, in
this case, we need for convergence. For the stable solu-
tion, the diagonal preconditioning is adopted, and the resultant
discrete equations from the point collocation (15)–(17) are ad-
dressed as in the following:

on

on

on

where is the dilation function. Solving this linear system for
the unknowns ’s, we can build up the approximate solu-
tion and its derivatives via the approximations

(18)

The adequate dilation function for irregular node distribution
is expected to play an essential role in treating the geometric
singularities.
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Fig. 3. (a) Convergence test for uniform node sets (10 � 10, 20 � 20, 40 �
40, 80� 80) whenm = 2 and (b) exactly reproduced polynomial solution even
on random nodes (114 � ) when m = 3.

V. NUMERICAL VALIDATION OF POINT COLLOCATION SCHEME

We take the electrostatic problem into consideration as an ap-
plication of our method. The electric potential function
is governed by Poisson type of partial differential equations of
(12)–(14). Before dealing with a complicated example, we are
going to show the accuracy and convergence of the scheme by
comparing the numerical solution to the exact one. We choose a
cubic polynomial as the exact solution of the Poisson problem
on the unit square [0,1] [0,1] as the following:

and its corresponding force term becomes the linear
polynomial . On the lower boundary ,

, and the upper one , , Dirichlet con-
ditions are assigned. We impose Neumann conditions on the re-
maining boundaries. In Fig. 3(a), the relative -convergence
of numerical solution is shown when the node distribution is uni-
form, and we use . The convergence order seems to be

. Fig. 3(b) illustrates the perfectly reproducing property
for polynomial solution, even on randomly distributed nodes
when we use , which should be predictable from the
reproducing properties of FMLSRK operators.

Now, the proposed method is applied to the electrostatic
problem on a complicated geometry with Dirichlet and Neu-
mann boundary conditions. The geometry and the boundary
conditions are shown in Fig. 4(a). Fig. 4(b) displays the nodes
for electric potential computation that have a considerably
irregular distribution with concentrations near tip regions of
the electrodes. In this case, we use the second-order basis
polynomial in calculating shape functions, i.e., . The
conjugate gradient method (CGM) for the discretized non-
symmetric system is adopted. The number of CGM iterations
for this problem with 4159 nodes is around 1108 to achieve
the successive tolerance up to order , which implies
that the stiffness matrix is well conditioned. The elapsed CPU
time on a Pentium 4 for solving this problem is about 120 s.
However, 100 s of the 120 are purely devoted to automatically
calculating the shape function values at the given nodes, which
can be seen as a counterpart, replacing the task of mesh or grid
generation. Fig. 4(c) and (d) illustrates the equipotential lines
and the electric vector field at the sample points, respectively,
using the approximation formula (18). The computational
results apparently reveal the capabilities of the point colloca-

Fig. 4. (a) Configuration of electric potential problem. (b) Irregular node
distribution (4159 nodes). (c) Contour plot of the computed electric potential
V (x; y). (d) Electric field computation ofrV (x; y) when m = 2.

tion method combined with dilation function, in spite of the
geometric singularity.

VI. CONCLUSION

The point collocation method, which was based on the
FMLSRK operators presented in this paper, was proposed. We
introduced the notion of dilation function and furthermore de-
signed a procedure to construct a continuous dilation function.
With this dilation function, we performed the electric field
computation on irregular nodes distributed in a complicated
geometry. The stepping node distributions are allowed in
calculating the numerical solution with the help of the dilation
function construction algorithm. Developing a more flexible
algorithm for the dilation function construction affects the
accuracy and the stability of the point collocation method.
Therefore, the point collocation method in this paper is a very
promising truly mesh-free method that is applicable to other
problems such as optimization problems, moving boundary
problems, and so on. Especially for 3-D problems, it is expected
to be a strong method for computational aspects.
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