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Abstract. We consider the solvability and the error estimates of numerical
solutions of the non-stationary incompressible Stokes and Navier-Stokes equa-
tions by the meshfree method. The moving least square reproducing kernel
method or the MLSRK method is employed for the space approximations.

The existence of numerical solutions and the L
2-type error estimates are ob-

tained. As a numerical example, we compare the numerical solutions of the
Stokes and the Navier-Stokes equations with the exact solutions. Also we solve

the non-stationary Navier-Stokes driven cavity flow using the MLSRK method.

1. Introduction. In this paper, the solvability and the error estimates of numerical
solutions for the non-stationary incompressible Stokes and Navier-Stokes equations
are considered by a Galerkin formulated meshfree method.

Several meshfree methods were proposed to various applications. We note that
Smoothed Particle Hydrodynamics (SPH) by Gingold and Monaghan(1977) [4],
Reproducing Kernel Particle Method (RKPM) by Liu et al.(1995) [12] [13], Diffuse
Element Method (DEM) by Nayrole et al.(1992) [17], Element Free Galerkin Method
(EFG) by Belytschko et al.(1994) [15], Partition of Unity Finite Element Method
(PUFEM) by Babuška and Melenk(1995) [16], Meshfree point collocation method
(MPCM) by Aluru(2000) [1] and Fast Moving Least Square Reproducing Kernel
Method (FMLSRK) by Kim and Kim(2003) [7] were proposed. In particular, we
are interested in the applications of the Moving Least Square Reproducing Kernel
Galerkin Method (MLSRK) proposed by Liu et al.(1996) [14] to the non-stationary
incompressible Navier-Stokes equations.
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18 CHOE, KIM, AND KIM

Comparing the extensive development of methodology, the mathematical study
on the meshfree method is under progress. In the paper[3], we obtained the solv-
ability and the convergence of numerical solutions for the stationary incompressible
Stokes and Navier-Stokes equations. As far as we know, this was the first attempt to
address mathematical result for meshfree method to the incompressible Stokes and
Navier-Stokes equations. In this paper, we consider time dependent incompress-
ible flow problems and developed a somewhat independent theory compared to the
stationary case. The approximation scheme for the time is not specified in this pa-
per. Our interest is the solvability and the error estimates for time continuous and
space discrete Stokes and Navier-Stokes equations. We obtain the solvability and
the convergence for successive approximation for the solution of the non-stationary
Stokes and Navier-Stokes equations, which results in the L2−error estimate of the
velocity.

For verification of the theory, we calculate numerical solutions for the non-
stationary incompressible Stokes and Navier-Stokes equations in two dimension and
relative errors of numerical solution are tabulated. Also the driven cavity flow is
implemented numerically as a test problem.

2. Moving Least Square Reproducing Kernel Method. In this section, we
only describe the outline of the MLSRK approximation. Let Ω be a bounded domain
in Rn and u(x) be a continuous function defined in Ω ⊂ Rn. Also we note that
multi-index notation is used throughout this section.

Let Pm(x) be the vector such that its elements are made by all polynomi-
als of order less than or equal to m. For example, if n = 2 and m = 2, then
Pm(x) is (1, x, y, x2, xy, y2)T . Suppose we have given node set Λ = {xi ∈ Ω | i =
1, 2, · · · , NP} on the domain Ω ⊂ Rn. With a compactly supported smooth non-
negative window function Φ, the resulting shape functions of MLSRK are defined
as the following:

φi(x) ≡ eM−1(x)Pm

(
xi − x

ρ

)
Φρ(xi − x). (1)

Here, Φρ(x− x̄) =
1

ρn
Φ

(
x − x̄

ρ

)
. The parameter ρ is called the dilation parameter

which determines the support of the shape function, and we will assume that ρ is
constant. The matrix M is the moment matrix as the following;

M(x) ≡

NP∑

j=1

Pm

(
xj − x

ρ

)
PT
m

(
xj − x

ρ

)
Φρ(xj − x).

Also e = (1, 0, · · · , 0) is the unit vector in R
(n+m)!

n!m! . For example, if n = 2 and
m = 2, explicit shape functions are the following.

φi(x) =
(

1 0 0 0 0 0
)
M−1(x)




1
xi−x
ρ

yi−y
ρ

(xi−x)
2

ρ2

(xi−x)(yi−y)
ρ2

(yi−y)
2

ρ2




Φρ(xi − x) .



MESHFREE METHOD 19

Since there is a close relation between node distribution and shape functions, we
assume that the node set satisfies a certain uniform distribution as the following.

Definition 1. Let Λ = {xi|i = 1, · · · , NP} be the set of nodes. We say Λ is a
regular node set if the followings hold.
i) There exists C1 > 0 independent of NP such that

min
i
hxi

≥ C1 max
i
hxi

,

where hxi
= minj 6=i |xi − xj |. We take h = mini hxi

as a characteristic distance of
Λ.
ii) Let ρ = γh, for some fixed γ > 1. There exists Cγ > 0 depending only on γ such
that

min
i
N(i, γ) ≥ Cγ max

i
N(i, γ)

where N(i, γ) is the number of nodes contained in Bρ(xi). We call γ the dilation
ratio and ρ the support radius.

Also we assume that the set of shape function satisfies the following condition.

Definition 2. Let A = {φi|i = 1, · · · , NP} be the set of MLSRK shape func-
tions generated by the window function Φ for the regular node set Λ = {xi|i =
1, · · · , NP}. Then A and Λ are admissible if there is a positive constant β0 such
that

n∑

α=1

NP∑

i,j=1

∫

Ω

φiφj dx a
α
i a

α
j ≥ β0‖a‖

2 (2)

for all aα ∈ RNP , α = 1, ..., n.

The above regular condition for node set implies an overlapping condition of
shape functions, that is, sufficient number of node points belong to the support
of each shape function φi to ensure the stability of the moment matrix. In short,
the regular condition implies a certain uniform condition for the node distance and
support radius of shape functions. We refer [3] for more details.

For the convergence analysis, we need an interpolation error estimate between
the solution space and the projection generated by the set of shape functions. We
state the interpolation error estimate theorem and related definitions in [3].

Definition 3. Let A = {φi|i = 1, · · · , NP} be the set of MLSRK shape func-
tions generated by the window function Φ for the regular node set Λ = {xi|i =
1, · · · , NP}. Let u(x) ∈ C0(Ω) be a function and ρ > 0 a real number. We define
the discrete projection as

Rm
ρ,h u(x) ≡

NP∑

i=1

u(xi)φi(x) =
∑

xi∈Λ(x)

u(xi)φi(x) ,

where φi(x) is the same as (1) and Λ(x) = {xi ∈ Λ|x ∈ suppφi ∩ Ω̄}. Here, m
denotes the order of generating polynomial basis Pm.

Remark 1. The notation Rm
ρ,h was used in [14] by Liu et. al. We follow their

notation for convenience. The above interpolation exactly reproduces elements in
Pm(x). Such property is called by the m-th order consistency. Henceforth, the
term ’shape functions with the m-th order consistency’ implies that meshfree shape
functions are generated from Pm(x).
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Theorem 1. (Theorem 2.1 in [3]) Assume the window function Φ(x) ∈ Cm0 (Rn)
and v(x) ∈ Cm+1(Ω), where Ω is a bounded open set in Rn. Let Λ = {xi|i =
1, · · · , NP} be a regular node set and A = {φi|i = 1, · · · , NP} be the set of ad-
missible shape functions. Suppose the boundary of Ω is smooth and suppφi ∩ Ω̄ is
convex for each i. If m and p satisfy

m >
n

p
− 1 ,

then the following interpolation estimate holds

‖v −Rm
ρ,h v‖Wk,p(Ω) ≤ Ck ρ

m+1−k ‖v‖Wm+1,p(Ω), for all 0 ≤ k ≤ m . (3)

For the analysis of convection terms for the Navier-Stokes equations, we introduce
the discrete Sobolev embedding theorem proposed by Choe et. al.[3].

Theorem 2. (Theorem 2.2 in [3]) We assume suppφi ∩ Ω is convex. Suppose
v ∈ C1

0 (Ω) and the window function Φ ∈ Cm0 (Rn),m ≥ 1. If p > n holds, then we
have the following inequalities

‖∇Rm
ρ,h v‖Lp ≤ C‖∇v‖Lp , (4)

sup
Ω

|Rm
ρ,hv| ≤ C|Ω|

1
n
− 1

p ‖∇v‖Lp . (5)

3. Applications of the MLSRK Method to the Incompressible Flow. In
this section, we consider the meshfree solutions for the non-stationary incompress-
ible viscous flows by adopting the idea of the mixed formulation. It is well known
that meshfree shape functions do not satisfy the Kronecker-δ property. Hence the
boundary integral terms are inevitable when using the variational formulation. How-
ever, we can choose the basis of the discrete solution space such that they satisfy a
certain rate of decay near the boundary of the domain.

In [3], the authors assumed two conditions on the test function space of the
velocity field. The window function was chosen with a specific decay rate, and it
was named the proper window function. The test function space for the velocity
consisted of the boundary transformed interior shape functions. The boundary
transformed shape functions are linear combinations of shape functions, so that
they satisfy the Kronecker-δ property on every boundary node points. As a result,
elements of the test function space for velocity satisfy sufficient decay rate near

the boundary, ‖φ̂i‖L∞(∂Ω) ≤ cρ2m. Then boundary integral terms of variational
formulation are negligible in the analysis as we showed in [3]. We refer [3] for
details on constructing the test function space for convenience. In this paper, we
take the same kind of test function space for velocity as in [3] so that any boundary
integrals are negligible through analysis. Henceforth, for simplicity, we omit terms
involving boundary integral through the paper. We show a numerical example for
the existence of such a basis in the next section.

Assume Ω is a bounded smooth domain in Rn (n = 2, 3). Let AV = {φi | i =
1, · · · , NP} be the set of MLSRK shape functions, generated from a proper window
function Φ to meet m-th order consistency for a given velocity nodes set ΛV =

{xVi | i = 1, · · · , NP}. We notate the set of interior node points Λ̂V = {xVi | i =

1, · · · , N̂P}. Also, the boundary transformed interior shape functions are notated

as ÂV = {φ̂i | i = 1, · · · , N̂P}. For the pressure, let AP = {ψj | j = 1, · · · ,MP} be
the set of MLSRK shape functions generated from a window function Ψ with m-th
order consistency for a given pressure nodes set ΛP = {xPj | j = 1, · · · ,MP}.
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Throughout this section, we assume ÂV and AP satisfy the admissibility condi-
tion which is defined in the previous section. In general, window functions Φ and

Ψ are different. Here, the φ̂i’s and ψj ’s are naturally associated with xVi ∈ Λ̂V

and xPj ∈ ΛP , respectively. We also assume that the characteristic distance for the
pressure node is compatible to the characteristic distance for the velocity node, and
so is the characteristic support radius of the shape function. Hence the discrete
solution spaces for velocity and pressure with finite time interval [0, T ] will be as
follows:

C1([0, T ] :
[
V h0 (Ω)

]n
) =





�

NP∑

i=1

ui(t)φ̂i(x) | φ̂i ∈ ÂV ,ui(t) ∈ C1[0, T ]



 (6)

C0([0, T ] : Mh(Ω)) =




MP∑

j=1

pj(t)ψj(x) | ψj ∈ AP , pj ∈ C0[0, T ],

∫

Ω

P (x) dx = 0

}
(7)

Note that the transformed velocity shape function satisfies the decay rate ‖φ̂i‖L∞(∂Ω) ≤

cρ2m.
Since we are considering different sets of shape functions like the set of velocity

shape functions and the set of pressure shape functions, we need to consider two

kinds of discrete projections, R̂m
ρV ,hV

for the velocity and SmρP ,hP
for the pressure

as follows

R̂m
ρV ,hV

u(x, t) =

NP∑

i=1

u(xVi , t) φ̂i(x) ,

SmρP ,hP
p(x, t) =

MP∑

j=1

p(xPj , t)ψj(x) ,

for any function u(x, t) ∈ C([0, T ] : C0(Ω)) and p(x, t) ∈ C([0, T ] : C(Ω)). We are
considering compatible node sets ΛV and ΛP , i.e, cρP ≤ ρV ≤ CρP and chP ≤ hV ≤

ChP . Therefore, the interpolation error for R̂m
ρV ,hV

and SmρP ,hP
are compatible.

Hence for simplicity, we will notate R̂m
ρV ,hV

as R̂m
ρ,h and SmρP ,hP

as Smρ,h. We note
that the projection error estimate theorem and the discrete Sobolev embedding

theorem are valid for R̂m
ρ,h.(Corollary 2.1, 2.2 in [3]),

We state the MLSRK version of the inf-sup condition which was introduced in
[3] for further study, while the original inf-sup condition was introduced by Babuška
[2].

Definition 4. We say a pair of shape function sets (ÂV , AP ) satisfy the inf-sup
condition if there exists λ > 0 independent of ρ such that

sup
U∈[V h

0 (Ω)]
n

< div U, P >

‖∇U‖L2

≥ λ‖P‖L2 , (8)

for all P ∈Mh(Ω).

We note that a sufficient condition, for the pair (ÂV , AP ) to meet the inf-sup
condition, was shown in [3].
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3.1. Stokes Problem. In this subsection, we consider the non-stationary incom-
pressible Stokes equations with zero boundary condition. The governing equations
are

ut − ν∆u + ∇p = f , (9)

∇·u = 0 ,

u(0,x) = u0(x) in Ω ,

u = 0 on ∂Ω ,

where the solution (u, p) ∈ L2(0,∞ : H2
0 (Ω)) ∩ L∞(0,∞ : H1

0 (Ω)) × L2(0,∞ :
H1(Ω)/R), the external force f ∈ L2(0,∞ : L2(Ω)), the initial data u0 ∈ Cm+1

0 (Ω)
is divergence free, and ν is the kinematic viscosity. Using the MLSRK method,
we study the existence of the numerical solution and its convergence to the exact
solution.

First we define a pair (U, P ) =
(∑ �

NP
i=1 ui(t)φ̂i(x),

∑MP
i=1 pi(t)ψi(x)

)
in C1([0, T ] :

[
V h0 (Ω)

]n
)×C0([0, T ] : Mh(Ω)) is the discrete solution to the Stokes equations (9),

if (U, P ) satisfy

d

dt

∫

Ω

UVdx + ν

∫

Ω

∇U∇V dx +

∫

Ω

V∇P dx =

∫

Ω

f V dx, (10)

∫

Ω

U · ∇Qdx = 0,

for all (V, Q) ∈ V ×W for the given initial data U(x, 0) = R̂m
ρ,h(u0)(x), where

V =
[
V h0 (Ω)

]n
=





�

NP∑

i=1

uiφ̂i(x) | φ̂i ∈ ÂV ,ui ∈ Rn



 (11)

W = Mh(Ω) =




MP∑

j=1

pjψj(x) | ψj ∈ AP , pj ∈ R,

∫

Ω

P (x) dx = 0



 . (12)

Then we have the following theorem for the existence and uniqueness of the
discrete Stokes problem. For the stability analysis, the regularity condition for the
velocity window function Φ and the pressure window function Ψ is necessary. We
suppose that Φ ∈ Cm+1

0 (Rn) and Ψ ∈ Cm0 (Rn) for m ≥ 0. The velocity window
function Φ is differentiable one more time than the pressure window function Ψ. A
similar assumption for the velocity element function and pressure element function
has been made for the mixed finite element theory of the incompressible Navier-

Stokes equations. We note that ÂV consist of interior transformed shape functions
out of AV ; the MLSRK shape functions generated from Φ, where Φ is a proper
window function. We also assume that node sets ΛV and ΛP are regular, and the

sets of shape function, ÂV and AP are admissible throughout the paper.

Theorem 3. We let ÂV and AP be the sets of velocity shape functions and pressure

shape functions with m-th order consistency, respectively. Suppose that (ÂV , AP )
satisfies the inf-sup condition (8). Then for f ∈ L2(0,∞ : L2(Ω)), there is a
unique discrete solution pair (U, P ) ∈ C1([0,∞) : V) × C([0,∞) : W) to discrete
n-dimensional Stokes equations (10).
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Proof. We need to find the velocity coefficient vectors ūα = [ūα1 , · · · , ū
α

�

NP
] for α =

1, · · · , n and the pressure coefficient vector p̄ = [p1, · · · , pMP ]T .
We define

Vσ = {φ ∈ V|

∫

Ω

(divφ)ψ dx = 0 for all ψ ∈ W} (13)

and

Wδ = {ψ ∈ W|

∫

Ω

(divφ)ψ dx = 0 for all φ ∈ V}. (14)

Note that the inf-sup condition of (ÂV , AP ) implies Wδ = {0}.
Now we formulate an equivalent problem: Find a solution U ∈ C1([0,∞) : Vσ)

satisfying
d

dt

∫

Ω

U · φdx + ν

∫

Ω

∇U∇φdx =

∫

Ω

f · φdx (15)

for all φ ∈ Vσ and U(x, 0) =
(
R̂mρ,hu0

)
(x). Since we are looking for the velocity coef-

ficient vectors ūα = [ūα1 , · · · , ū
α

�

NP
] for α = 1, · · · , n, we may regard (15) as a system

of linear ordinary differential equations with initial data (U, P ) = (R̂m
ρ,h u

0
,Smρ,h p0

).

Note that it is known that there is a Stokes solution (u, p) ∈ L2(0,∞ : H2
0 (Ω)) ∩

L∞(0,∞ : H1
0 (Ω)) × L2(0,∞ : H1(Ω)/R) for f ∈ L2(0,∞ : L2(Ω)). Then from our

admissibility condition (2) of the node distribution and the existence theorem of
the ordinary differential equation, there is a unique solution in C1([0,∞) : Vσ).

Now we let PU : V → R be

PU(φ) = −
d

dt

∫

Ω

U · φdx − ν

∫

Ω

∇U∇φdx +

∫

Ω

f · φdx, (16)

then ker(PU) ⊇ Vσ.

Now define E : W → V
′

by < E(ψ), φ >= −
∫
Ω
φ∇ψ dx for all ψ ∈ W, φ ∈ V.

Then the adjoint of E, D : V → W
′

is induced by < ψ,D(φ) >=
∫
Ω

(divφ) ψ dx,

and the range of E, R(E) ∼= (Ker(D))⊥ ≡ V/Vσ. Since Vσ ⊆ ker(PU), there exists
P ∈ W such that

PU(φ) = −

∫

Ω

φ∇P dx ,

for all φ ∈ V. Since we are assuming f is continuous in L2(Ω) as a function of time,
(U, P ) is also C1 ×C0 in time. Moreover, from the uniqueness of the system of the
ordinary differential equations, (U, P ) is unique.

For the convergence analysis, we need to clarify the H1 projection from V to Vσ.
We let Pσ : V → Vσ be the H1 projection, that is, for given φ ∈ V Pσ(φ) ∈ Vσ
minimizes ∫

Ω

|∇(φ− Pσ(φ))|
2
dx

and we define η(φ) = φ− Pσ(φ), for each φ ∈ V.

Definition 5. We say (ÂV , AP ) is non-degenerate, if for all φ ∈ V

sup
ψ∈W,||ψ||

L2=1

∫

Ω

[div(η(φ))] ψ dx ≥ λ0 ||η(φ)||H1 (17)

for some λ0 > 0.
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We know that V and Vσ are finite dimensional spaces and Vσ ⊂ V. For each
φ ∈ V, we also define a map D(φ) : W → R by

(D(φ))(ψ) =

∫

Ω

ψ divφdx. (18)

So D maps V into W
′

and ker(D) = Vσ, where W
′

is the dual space of W. Then,
as we have seen in the proof of the previous theorem,

V/Vσ ∼= W

that is V/Vσ is isometrically isomorphic to W. Vσ is the kernel of D : V → W
′

and

hence D induces a natural map from V/Vσ to W
′

.
Any vector φ ∈ V can be decomposed uniquely as

φ = Pσφ+ η(φ). (19)

Hence from the inner product structure of H1, we have
∫

Ω

∇Pσφ∇η(φ) dx = 0. (20)

From the motivation of this orthogonality, we define a new norm || · ||div on η(V) by

||η(φ)||div = sup
ψ∈W,||ψ||

L2=1

∫

Ω

ψ divφdx. (21)

The inf-sup condition and the orthogonality imply || · ||div is well defined norm on
η(V). Now we define a norm || · ||V by

||φ||V = ||Pσφ||H1 + ||η(φ)||div. (22)

We claim that || · ||H1 is equivalent to || · ||V . From the orthogonality of Pσ(φ) and
η(φ) in H1, we get

||Pσ(φ)||H1 ≤ ||φ||H1 . (23)

Considering the definition of ||φ||div and Hölder inequality, we obtain

||η(φ)||div = sup
ψ∈W,||ψ||

L2=1

∫

Ω

ψ divφdx ≤ ||divφ||L2 ≤ ||φ||H1 (24)

and

||Pσ(φ)||H1 + ||η(φ)||div ≤ 2||φ||H1 . (25)

For the opposite direction, we need to show

||∇η(φ)||L2 ≤ c||η(φ)||div. (26)

And this follows from the non-degeneracy of (ÂV , AP ). Indeed, we have

||∇η(φ)||L2 ≤
1

λ0
sup

ψ∈W,||ψ||
L2=1

∫

Ω

ψdivφdx =
1

λ0
||η(φ)||div. (27)

Lemma 1. Suppose (ÂV , AP ) is non-degenerate and satisfies the inf-sup condition,
then for all φ ∈ V, we have

λ0||φ||H1 ≤ ||Pσ(φ)||H1 + ||η(φ)||div ≤ 2||φ||H1 . (28)
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As a corollary, we obtain the projection error estimate for Pσ on V. Indeed, for a

given divergence free vector u ∈ Cm+1
0 (Ω), we take φ = R̂m

ρ,h u − PσR̂m
ρ,hu in (28).

Then, Pσ(φ) = 0, and we obtain

‖R̂m
ρ,h u − PσR̂m

ρ,hu‖H1 ≤
C

λ0
‖R̂m

ρ,h u − PσR̂m
ρ,hu‖div (29)

=
C

λ0
sup

ψ∈W,‖ψ‖
L2=1

∫

Ω

div(R̂m
ρ,h u − u)ψ dx

≤
C

λ0
‖u − R̂m

ρ,h u‖H1 ≤ C(λ0)ρ
m‖u‖Hm+1 .

Corollary 1. Suppose u ∈ Cm+1
0 (Ω) and div(u) = 0, then we have

‖R̂m
ρ,h u − PσR̂m

ρ,hu‖H1 ≤ C(λ0)ρ
m‖u‖Hm+1 . (30)

Now we are ready to show the error estimate of the MLSRK scheme for the
Stokes equations.

Theorem 4. Let ÂV and AP be the sets of the velocity shape functions and the

pressure shape functions, respectively. Suppose (ÂV , AP ) is non-degenerate and
satisfies inf-sup condition. Let (u, p) ∈ L2(0,∞ : H2

0 (Ω)) ∩ L∞(0,∞ : H1
0 (Ω)) ×

L2(0,∞ : H1(Ω)/R) be the solution of the Stokes equations (9) for f ∈ L2(0,∞ :
L2(Ω)) and (U, P ) ∈ C1([0, T ] : V) × C0([0, T ] : W) be the MLSRK solution of the
discrete Stokes equation (10). Then the following error estimates hold.

‖U − u‖2
L2(T ) +

∫ T

0

‖∇(U − u)‖2
L2(t) dt (31)

≤Cρ2m

(
‖u0‖

2
Hm+1 + ‖u‖2

Hm+1(T ) +

∫ T

0

‖ut‖
2
Hm+1(t) + ‖u‖2

Hm+1(t) + ‖p‖2
Hm dt

)
.

Proof. We have the error equations

∫

Ω

(U − u)t φdx + ν

∫

Ω

∇(U − u) · ∇φdx +

∫

Ω

(P − p) divφdx = 0 , (32)

∫

Ω

ψ div(U − u) dx = 0,

for all φ ∈ V and ψ ∈ W. Now we take U−PσR̂m
ρ,hu as a test function to our error

equations, and we obtain

∫

Ω

(U − u)t (U − PσR̂m
ρ,hu) dx + ν

∫

Ω

∇(U − u) · ∇(U − PσR̂m
ρ,hu) dx (33)

+

∫

Ω

(P − p) div(U − PσR̂m
ρ,hu) dx = 0.
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We add and subtract u in U − PσR̂m
ρ,hu. Then, integrating in time, we obtain

1

2

∫

Ω

|U − u|2(x, T ) dx + ν

∫ T

0

∫

Ω

|∇(U − u)|2 dx dt

=
1

2

∫

Ω

|U − u|2(x, 0) dx −

∫ T

0

∫

Ω

(U − u)t(u − PσR̂m
ρ,hu) dx dt

− ν

∫ T

0

∫

Ω

∇(U − u)∇(u − PσR̂m
ρ,hu) dx dt

−

∫ T

0

∫

Ω

(P − p)div(u − PσR̂m
ρ,hu) dx dt

=I + II + III + IV.

Since U(x, 0) = R̂m
ρ,h u

0
(x), we have

|I| ≤ Cρ2m||u0||
2
Hm+1 .

From the integration by parts on time, we get

II = −

∫

Ω

(U − u)(u − PσR̂m
ρ,hu)(x, T ) dx +

∫

Ω

(U − u)(u − PσR̂m
ρ,hu)(x, 0) dx

+

∫ T

0

∫

Ω

(U − u)(u − PσR̂m
ρ,hu)t dx dt.

From Hölder inequality, the interpolation estimate (3) and the projection error
estimate to the divergence free space (30), we have

∫

Ω

(U − u)(u − PσR̂m
ρ,hu)(x, T ) dx ≤

1

8

∫

Ω

|U − u|2(x, T ) dx

+ C

∫

Ω

|u − R̂m
ρ,h u|2(x, T ) dx + C

∫

Ω

|R̂m
ρ,h u − PσR̂m

ρ,hu|
2(x, T ) dx

≤
1

8

∫

Ω

|U − u|
2
(x, T ) dx + Cρ2m‖u‖2

Hm+1(T ).

We know that the projection PσR̂m
ρ,h commutes with the time differentiation. There-

fore we get
∣∣∣∣∣

∫ T

0

∫

Ω

(U − u) (u − PσR̂m
ρ,hu)t dx dt

∣∣∣∣∣

≤ ε0

∫ T

0

∫

Ω

|U − u|
2
dx dt+ C

∫ T

0

∫

Ω

∣∣∣ut − R̂m
ρ,hut

∣∣∣
2

dx dt

+ C

∫ T

0

∫

Ω

∣∣∣R̂m
ρ,hut − PσR̂m

ρ,hut

∣∣∣
2

dx dt

≤ ε0 |Ω|
2
n

∫ T

0

∫

Ω

|∇U −∇u|
2
dx dt+ C

∫ T

0

∫

Ω

∣∣∣ut − R̂m
ρ,hut

∣∣∣
2

dx dt

+ C

∫ T

0

∫

Ω

∣∣∣R̂m
ρ,hut − PσR̂m

ρ,hut

∣∣∣
2

dx dt

≤
ν

8

∫ T

0

∫

Ω

|∇U −∇u|
2
dx dt+ Cρ2m

∫ T

0

‖ut‖
2
Hm+1(t) dt
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for sufficiently small ε0. Here we used the Poincáre inequality. From the Hölder
inequality, we have

|III| ≤
ν

8

∫ T

0

∫

Ω

|∇(U − u)|2 dx dt+

∫ T

0

∫

Ω

|∇(u − R̂m
ρ,hu)|2 dx dt

+

∫ T

0

∫

Ω

|∇(R̂m
ρ,hu − PσR̂m

ρ,hu)|2 dx dt

≤
ν

8

∫ T

0

∫

Ω

|∇(U − u)|2 dx dt+ Cρ2m

∫ T

0

||u||2Hm+1(t) dt.

Finally we have

IV =

∫ T

0

∫

Ω

(P − Smρ,hp) div(u − PσR̂m
ρ,hu) dx dt

+

∫ T

0

∫

Ω

(Smρ,hp− p) div(u − PσR̂m
ρ,hu) dx dt.

But from the definition of the projection Pσ, we have PσR̂m
ρ,hu ∈ Vσ and

∫ T

0

∫

Ω

|∇(R̂m
ρ,hu − PσR̂m

ρ,hu)|2 dx dt = 0.

From the interpolation theorem, we get

|IV| ≤C

∫ T

0

∫

Ω

|Smρ,hp− p|2 dx dt+ C

∫ T

0

∫

Ω

|∇(u − R̂m
ρ,hu)|2 dx dt

+ C

∫ T

0

∫

Ω

|∇(R̂m
ρ,hu − PσR̂m

ρ,hu)|2 dx dt

≤Cρ2m

(∫ T

0

||p||2Hm(t) dt+

∫ T

0

||u||2Hm+1(t) dt

)
.

Therefore, combining all the estimates, we get the proof done for (31).

3.2. Navier-Stokes Problem. In this subsection we show the existence and error
estimates for the MLSRK solutions of the following non-stationary incompressible
Navier-Stokes equations.

ut − ν∆u+(u · ∇)u + ∇p = f , (34)

∇·u = 0 ,

u(0, x) = u0(x) in Ω ,

u = 0 on ∂Ω,

where the initial data u0 is divergence free, the external force f is a given function
with appropriate regularity in Ω̄ and ν is the viscosity. We assume that (u, p) ∈
L2(0,∞ : H2

0 (Ω)) ∩ L∞(0,∞ : H1
0 (Ω)) × L2(0,∞ : H1(Ω)/R). The function space

H1(Ω)/R is the set of all H1(Ω)−functions with zero mean in Ω. The necessary
regularity of f will be assumed in each appearance. We assume the same hypothesis
for the velocity and pressure nodes as the admissibility, non-degeneracy and the
inf-sup condition in previous section.
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We discretize (34) in the following way:

d

dt

∫

Ω

U · V dx+ ν

∫

Ω

∇U∇V dx +
1

2

(∫

Ω

(U · ∇)UV dx −

∫

Ω

(U · ∇)VU dx

)

(35)

+

∫

Ω

∇PV dx =

∫

Ω

fV dx

∫

Ω

U · ∇Qdx = 0

for all (V, Q) ∈ V ×W. In the continuous case,

1

2
(

∫

Ω

(u · ∇)uv dx −

∫

Ω

(u · ∇)vu dx) =

∫

Ω

(u · ∇)uv dx (36)

since ∇·u = 0. Using (36), we have a priori estimate (38) for the following existence
theorem.

Theorem 5. We let ÂV and AP be the sets of the velocity shape functions and the

pressure shape functions, respectively. Suppose that (ÂV , AP ) satisfies the inf-sup
condition. Then for f ∈ C([0,∞) : C1(Ω)) there is a unique discrete solution pair
(U, P ) ∈ C1([0,∞) : V) × C([0,∞) : W) for the discrete n-dimensional Navier-
Stokes equations (35), where V and W are defined as (11), (12).

Proof. Following the same way as in the Stokes equation, we employ Vσ = {φ ∈
V|
∫
Ω
(divφ)ψ = 0 for all ψ ∈ W} and Wδ = {ψ ∈ W|

∫
Ω
(divφ)ψ = 0, for all φ ∈

V}. Now consider an equivalent problem: Find a solution U ∈ C1([0,∞) : Vσ) sat-
isfying

d

dt

∫

Ω

U · φdx + ν

∫

Ω

∇U∇φdx (37)

+
1

2

(∫

Ω

(U · ∇)Uφdx −

∫

Ω

(U · ∇)φU dx

)
=

∫

Ω

f · φdx,

for all φ ∈ Vσ and U(x, 0) =
(
R̂m
ρ,hu0

)
(x). The equation (37) is a system of non-

linear ordinary differential equations. Unlike the Stokes equations, the admissibility
assumption guarantee only the local existence of the solution near t = 0. The global
existence of the solution for the above equations is obtained from the following a
priori estimate. Taking U as a test function to (37) and integrating for the time,
we obtain

∫

Ω

|U(t, ·)|
2
dx + ν

∫ t

0

∫

Ω

|∇U|
2
dx dt ≤

∫

Ω

|U(0, ·)|
2
dx +

∫ t

0

∫

Ω

f · U dxdt

≤

∫

Ω

|U(0, ·)|
2
dx + C(ε)

∫ t

0

∫

Ω

|f |
2
dx dt+ ε

∫ t

0

∫

Ω

|U|
2
dx dt (38)

≤

∫

Ω

|U(0, ·)|
2
dx + C(ε)

∫ t

0

∫

Ω

|f |
2
dx dt+ εC(Ω)

∫ t

0

∫

Ω

|∇U|
2
dx dt .

In the last inequality, we used the Poincáre inequality. Now choosing small ε, we
have
∫

Ω

|U(t, ·)|
2
dx + ν

∫ t

0

∫

Ω

|∇U|
2
dx dt ≤ C

(∫ t

0

∫

Ω

|f |
2
dx dt+

∫

Ω

|U(0, ·)|
2
dx

)
.



MESHFREE METHOD 29

We can find the pressure P ∈ C([0,∞) : W) satisfying

−

∫
φ∇P dx =

∫

Ω

Ut · φ+ ν∇U · ∇φ+
1

2
{(U · ∇)Uφ− (U · ∇)φU} − fφk dx,

by following the same way as in the Stokes equations. Since we are assuming f is
continuous in L2(Ω) as a function of time, (U, P ) is also C1×C0 in time. Moreover,
from the local uniqueness of the system of ordinary differential equations, (U, P ) is
unique.

For the stability analysis, we employ the following error equations by comparing
continuous Navier-Stokes equations (34) and discrete Navier-Stokes equations (35).

∫

Ω

(U − u)tφdx + ν

∫

Ω

∇(U − u) · ∇φdx (39)

+
1

2

∫

Ω

{(U − u) · ∇Uφ+ u · ∇(U − u)φ} dx

+
1

2

∫

Ω

{(U − u) · φ∇U + u · ∇φ(U − u)} dx −

∫

Ω

(U − u)divφdx = 0,

∫

Ω

ψdiv(U − u) dx = 0,

for all φ ∈ V, ψ ∈ W. Here, we need to be careful since the sufficient regularity of

u is not known. But we take U − PσR̂m
ρ,hu ∈ V as a test function to (39), and we

obtain∫

Ω

(U − u)t(U − PσR̂m
ρ,hu) dx + ν

∫

Ω

∇(U − u) · ∇(U − PσR̂m
ρ,hu) dx (40)

+
1

2

∫

Ω

{(U − u) · ∇U(U − PσR̂m
ρ,hu) + u · ∇(U − u)(U − PσR̂m

ρ,hu)} dx

+
1

2

∫

Ω

{(U − u) · (U − PσR̂m
ρ,hu)∇U + u · ∇(U − PσR̂m

ρ,hu)(U − u)} dx

−

∫

Ω

(P − p)div(U − PσR̂m
ρ,hu) dx = 0.

As in the case of the Stokes equations, we will estimate each term of (40). For
the first term of (40), we have

∫

Ω

(U − u)t(U − PσR̂m
ρ,hu) dx (41)

=
1

2

d

dt

∫

Ω

|U − u|
2
dx +

∫

Ω

(U − u)t(u − PσR̂m
ρ,hu) dx

=
1

2

d

dt

∫

Ω

|U − u|
2
dx +

d

dt

∫

Ω

(U − u)(u − PσR̂m
ρ,hu) dx

−

∫

Ω

(U − u)(ut − PσR̂m
ρ,hut) dx.

For the second term of (40), by adding and subtracting u, we have
∫

Ω

∇(U − u) · ∇(U − PσR̂m
ρ,hu) dx (42)

=

∫

Ω

|∇(U − u)|
2
dx +

∫

Ω

∇(U − u) · ∇(u − PσR̂m
ρ,hu) dx.
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For the other terms which are not involving pressure, since cancelations occur, we
have the followings.
∫

Ω

(U − u) · ∇U(U − PσR̂m
ρ,hu) dx +

∫

Ω

u · ∇(U − u)(U − PσR̂m
ρ,hu) dx (43)

−

∫

Ω

(U − u) · ∇(U − PσR̂m
ρ,hu)U dx −

∫

Ω

u · ∇(U − PσR̂m
ρ,hu)(U − u) dx

=

∫

Ω

(U − u) · ∇u(U − u) dx +

∫

Ω

(U − u) · ∇U(u − PσR̂m
ρ,hu) dx

+

∫

Ω

u · ∇(U − u)(u − PσR̂m
ρ,hu) dx −

∫

Ω

(U − u) · ∇(u − PσR̂m
ρ,hu)(U − u) dx

−

∫

Ω

(U − u) · ∇(U − u)u dx −

∫

Ω

(U − u) · ∇(u − PσR̂m
ρ,hu)u dx

−

∫

Ω

u · ∇(u − PσR̂m
ρ,hu)(U − u) dx

=I + II + III + IV + V + VI + VII.

From the Hölder inequality, the Sobolev inequality and the Young’s inequality, we
have

|I| =

∣∣∣∣
∫

Ω

(U − u) · ∇u(U − u) dx

∣∣∣∣ (44)

≤ C‖U − u‖L2‖∇u‖L3‖U − u‖L6

≤ C‖U − u‖L2‖∇
2u‖L2‖∇(U − u)‖L2

≤ Cε‖∇(U − u)‖
2
L2 +

C

ε
‖u‖

2
H2‖U − u‖

2
L2 ,

for some ε > 0. We have a similar estimate for II, for some ε > 0,

|II| =

∣∣∣∣
∫

Ω

(U − u) · ∇U(u − PσR̂m
ρ,hu) dx

∣∣∣∣ (45)

≤ C‖U − u‖L6‖∇U‖L3‖u − PσR̂m
ρ,hu‖L2

≤ C‖∇(U − u)‖L2‖∇U‖L3{‖u − R̂m
ρ,h u‖

L2
+ ‖R̂m

ρ,h u − PσR̂m
ρ,hu‖L2

}

≤ Cε‖∇(U − u)‖
2
L2 +

Cρ2m

ε
‖U‖

2
H2‖u‖

2
Hm+1 .

Here, we have used the interpolation estimate (3) and the projection estimate (30).
In detail, we used

‖u − R̂m
ρ,h u‖

L3
≤ Cρm+1‖u‖Hm+1 (46)

and

‖R̂m
ρ,h u − PσR̂m

ρ,hu‖L2
≤ C‖R̂m

ρ,h u − PσR̂m
ρ,hu‖H1

(47)

≤
C

λ0
‖R̂m

ρ,h u − PσR̂m
ρ,hu‖div =

C

λ0
sup

ψ∈W,‖ψ‖
L2=1

∫

Ω

ψdiv(R̂m
ρ,h u − u) dx

≤
C

λ0
‖u − R̂m

ρ,h u‖
H1

≤
C

λ0
ρm‖u‖Hm+1 .
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Using similar arguments as above, we have the following estimates,

|III| =

∣∣∣∣
∫

Ω

u · ∇(U − u)(u − PσR̂m
ρ,hu) dx

∣∣∣∣ (48)

≤ Cε‖∇(U − u)‖
2
L2 +

Cρ2m

ε
‖u‖

2
Hm+1‖u‖

2
H1 ,

|IV| =

∣∣∣∣
∫

Ω

(U − u) · ∇(u − PσR̂m
ρ,hu)(U − u) dx

∣∣∣∣ (49)

≤ Cρm‖u‖Hm+1‖∇(U − u)‖
2
L2 .

Since L∞-norm is bounded by the H2-norm from the Sobolev inequality, we have

|V| =

∣∣∣∣
∫

Ω

(U − u) · ∇(U − u)u dx

∣∣∣∣ (50)

≤ Cε‖∇(U − u)‖
2
L2 +

C

ε
‖U − u‖

2
L2‖u‖

2
H2 .

From the interpolation estimate (3) and the projection estimate (30), we have

|VI| =

∣∣∣∣
∫

Ω

(U − u) · ∇(u − PσR̂m
ρ,hu)u dx

∣∣∣∣ (51)

≤ Cε‖∇(U − u)‖
2
L2 +

Cρ2m

ε
‖u‖

2
Hm+1‖u‖

2
H1 ,

and

|VII| =

∣∣∣∣
∫

Ω

u · ∇(u − PσR̂m
ρ,hu)(U − u) dx

∣∣∣∣ (52)

≤ Cε‖∇(U − u)‖
2
L2 +

Cρ2m

ε
‖u‖

2
Hm+1‖u‖

2
H1 .

For the last term of the left hand side of equation (40), we have

∫

Ω

(P − p)div(U − PσR̂m
ρ,hu) dx (53)

=

∫

Ω

(P − Smρ,h p)div(U − PσR̂m
ρ,hu) dx +

∫

Ω

(Smρ,h p− p)div(U − PσR̂m
ρ,hu) dx

=

∫

Ω

(Smρ,h p− p)div(U − u) dx +

∫

Ω

(Smρ,h p− p)div(u − PσR̂m
ρ,hu) dx.

Note that P − Smρ,h p ∈ W and div(U − PσR̂m
ρ,hu) ∈ Vσ. Hence we have

∣∣∣∣
∫

Ω

(P − p)div(U − PσR̂m
ρ,hu) dx

∣∣∣∣ (54)

≤Cε‖∇(U − u)‖
2
L2 + (

C

ε
+ 1)‖Smρ,h p− p‖

2

L2 + ‖∇(u − PσR̂m
ρ,hu)‖

2

L2

≤Cε‖∇(U − u)‖
2
L2 + (

C

ε
+ 1)ρ2(m+1)‖p‖

2
Hm+1 + Cρ2m‖u‖

2
Hm+1 .
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Therefore combining all previous estimates from (41) to (54) and choosing a suffi-
ciently small ε > 0, we have

d

dt

∫

Ω

|U − u|
2
(t) dx + ν (1 − C0ρ

m‖u‖Hm+1(t))

∫

Ω

|∇(U − u)|
2
(t) dx (55)

≤−
d

dt

∫

Ω

(U − u)(u − PσR̂m
ρ,hu)(t) dx + C1

∫

Ω

|ut − PσR̂m
ρ,hut|

2
(t) dx

+ C2‖U − u‖
2
L2(t)

(
1 + ‖u‖

2
H2(t)

)

+ C3ρ
2m‖u‖

2
Hm+1(t)

(
1 + ‖U‖

2
H2(t) + ‖u‖

2
H2(t)

)
.

Now let the L2-norm of the error be the following,

E(t) =

∫

Ω

|U − u|
2
(t) dx , (56)

and let the integrating factor be the following

α(t) = C2

∫ t

0

(
1 + ‖u‖

2
H2(t)

)
dt, (57)

then multiplying the integrating factor e−α(t), (55) becomes

d

dt

(
e−α(t)E(t)

)
+ ν (1 − C0ρ

m‖u‖Hm+1(t)) e
−α(t)

∫

Ω

|∇(U − u)|
2
(t) dx (58)

≤
d

dt

(
−e−α(t)

∫

Ω

(U − u)(u − PσR̂m
ρ,hu)(t) dx

)

− α
′

(t)e−α(t)

∫

Ω

(U − u)(u − PσR̂m
ρ,hu)(t) dx

+ C4ρ
2me−α(t){‖ut‖

2
Hm+1(t) + ‖u‖

2
Hm+1(t)

(
1 + ‖U‖

2
H2(t) + ‖u‖

2
H2(t)

)
} .

Hence integrating (58), we get

e−α(T )E(T ) +

∫ T

0

∫

Ω

ν (1 − C0ρ
m‖u‖Hm+1(t)) e

−α(t)|∇(U − u)|
2
(t) dx dt

≤ E(0) − e−α(T )

∫

Ω

(U − u)(u − PσR̂m
ρ,hu)(T ) dx (59)

+ e−α(0)

∫

Ω

(U − u)(u − PσR̂m
ρ,hu)(0) dx

−

∫ T

0

∫

Ω

α
′

(t)e−α(t)(U − u)(u − PσR̂m
ρ,hu)(t) dx dt

+ C4ρ
2m

∫ T

0

e−α(t){‖ut‖
2
Hm+1(t) + ‖u‖

2
Hm+1(t)

(
1 + ‖U‖

2
H1(t) + ‖u‖

2
H2(t)

)
} dt .

Applying the Young’s inequality and the interpolation estimate (3) and the projec-
tion error estimate to the divergence free space (30) to the terms on the righthand
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side of (59), we have

e−α(T )E(T ) +

∫ T

0

∫

Ω

ν (1 − C0ρ
m‖u‖Hm+1(t)) e

−α(t)|∇(U − u)|
2
(t) dx dt

≤ E(0) + εe−α(T )E(T ) +
ρ2m

ε
e−α(T )‖u‖

2
Hm+1(T ) (60)

+ E(0) + ρ2m‖u‖
2
Hm+1(0)

+ ε

∫ T

0

∫

Ω

C2

(
1 + ‖u‖

2
H2(t)

)
e−α(t)|U − u|

2
dx dt

+
C

ε

∫ T

0

∫

Ω

C2

(
1 + ‖u‖

2
H2(t)

)
e−α(t)

∣∣∣u − PσR̂m
ρ,hu

∣∣∣
2

dx dt

+ C4ρ
2m

∫ T

0

e−α(t){‖ut‖
2
Hm+1(t) + ‖u‖

2
Hm+1(t)

(
1 + ‖U‖

2
H2(t) + ‖u‖

2
H2(t)

)
} dt .

But from the Poincáre inequality, we get

∫ T

0

C2(1 + ‖u‖
2
H2(t))e

−α(t)

∫

Ω

|U − u|
2
dx dt (61)

≤C(|Ω|
2
n )

∫ T

0

{1 + ‖u‖
2
H2(t)}e

−α(t)

∫

Ω

|∇(U − u)|
2
dx dt.

Hence choosing a sufficiently small ε > 0, if ‖u‖
2
Hm+1(t) < M for 0 ≤ t ≤ T and

ρm < C
M

, we have the following theorem of error estimates.

Theorem 6. Let ÂV and AP be the sets of the velocity shape functions and the pres-

sure shape functions with m-th order consistency , respectively. Suppose (ÂV , AP )
is non-degenerate and satisfies the inf-sup condition. And assume (u, p) ∈ L2(0,∞ :
H2

0 (Ω)) ∩ L∞(0,∞ : H1
0 (Ω)) × L2(0,∞ : H1(Ω)/R) is the solution of the Navier-

Stokes equations (34) for f ∈ L2(0,∞ : L2(Ω)) and (U, P ) ∈ C1([0, T ] : V) ×
C0([0, T ] : W) is the MLSRK solution of the discrete Navier-Stokes equation (35).

Then there are some positive constants c, c1 such that for ρm < C
M

where ‖u‖
2
Hm+1(t) <

M , the following error estimates hold.

‖U − u‖2
L2(T ) +

∫ T

0

ec1(T−t)‖∇(U − u)‖2
L2(t) dt (62)

≤ Cρ2mec1T

[
‖u0‖

2
Hm+1 + ‖u‖2

Hm+1(T ) +

∫ T

0

e−c1t{‖ut‖
2
Hm+1(t)

+‖u‖2
Hm+1(t)

(
1 + ‖U‖2

H2(t) + ‖u‖2
H2(t)

)
} dt
]
.

4. Numerical Examples. In this section, we show numerical examples. We ob-
tained the L2-error estimates for the velocity for the non-stationary incompressible
Stokes and Navier-Stokes equations, respectively, with zero boundary condition. In
each case, the error is O(ρ) for the fixed time T for both equations from the as-
sumption of the regularity of the true solution. The emphasis in this section is on
verifying these results numerically.
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4.1. Shape functions for velocity. In this subsection, we show an example of
test functions for velocity. The decay profile of shape functions on the boundary
will be presented numerically. Consider Ω = [0, 1]×[0, 1] ⊂ R2, and the regular node

set Λ =
{(

i
n
, j
n

)
| i = 0, · · · , n j = 0, · · · , n

}
, where n is some positive constant.

Let Φ = S(x)S(y),where S is defined as the following.

S(t) =





2
3 − 4|t|2(1 − |t|) for |t| ≤ 1

2
4
3 (1 − |t|)3 for 1

2 < |t| < 1
0 for 1 ≤ |t| .

(63)

We notate the shape functions φi with window functions Φ. The transformed shape
functions are defined by the following.

φ̂i(x) =

{ ∑
j d(i,j)φj(x) if supp(φi) ∩ ∂Ω 6= φ

φi otherwise ,

where [d(i,j)] = [φi(xj)]
−1.

Nodes h γ ρ M
121 1.00e-01 1.8 1.8000e-01 1.719250e-02
441 5.00e-02 1.4 7.0000e-02 4.882729e-03
1681 2.50e-02 1.2 3.0000e-02 1.340959e-03
6561 1.25e-02 1.1 1.3750e-02 2.673020e-04
25921 6.25e-03 1.05 6.5625e-03 4.274686e-05

Table 1. M = maxx∈∂Ωφ̂i

In table 1, h, γ and ρ stand for the nodal distance, a dilation parameter and the
support radius of the shape function. The maximum value of shape functions on
the boundary decreases as shown in the above. Since we are considering the first
order shape functions, the expected decay ratio is 2. This numerical example shows
bigger decay ratio than 2.

4.2. Convergence of numerical solutions. We consider the domain Ω = [0, 1]×
[0, 1] and take (u, p) as followings,

u = sin2(πx)sin(πy)cos(πy)exp(−t), (64)

v = −sin(πx)cos(πx)sin2(πy)exp(−t), (65)

p = (x2 − y2)exp(−t), (66)

where u = (u, v). Next we calculate corresponding external forces fS and fNS of
the following dimensionless form of the Stokes equations

∂u

∂t
− ν∆u+∇p = fS , (67)

∇ · u = 0 in Ω ,

where ν = 1, and the Navier-Stokes equations respectively,

∂u

∂t
−

1

Re
∆u+(u · ∇)u + ∇p = fNS , (68)

∇ · u = 0 in Ω ,

where Re stands for the Reynolds number. Now we have the exact solutions of
the Stokes equations and the Navier-Stokes equations for the above external forces
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fS and fNS with corresponding boundary conditions. We want to compare relative
errors between exact solutions and numerical solutions, for the Stokes equations and
the Navier-Stokes equations respectively. In case of Navier-Stokes equations, we
take Re = 100. With the above external force fS and fNS with boundary conditions
from (64), (65) and (66), we compute the MLSRK solutions for the discrete Stokes
equations (10) and the Navier-Stokes equations (35). Here we used the d’Alembert’s
principle to impose boundary conditions, we refer [6] for details. Node distributions
for the velocity and the pressure are considered to satisfy the inf-sup condition,
in fact, the velocity nodes are located at the points ( i

2n ,
j
2n ) for i, j = 1, 2, · · · , 2n

and the pressure nodes are assigned at the points ( i
n
, j
n
) for i, j = 1, 2, · · · , n, as

shown in figure 1. Since we assumed that u ∈ H2(Ω), we use the first order shape

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 1. Distribution of Nodes(Velocity and Pressure)

functions, i.e. m = 1. We chose shape functions of velocity and pressure with
dilation parameters ρv and ρp such that ρv = 1.1 × h and ρp = 2ρv, while the
window function is the product of cubic spline functions defined in (63). This
means that we take the support size of the pressure shape function to be double
of the velocity shape function. This type of shape functions seems to satisfy the
inf-sup condition. The shape functions of the velocity and the pressure associated
with the window function Φ(x, y) are drawn in Fig. 2. For the discretization in

Velocity Shape Function
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Pressure Shape Function
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Figure 2. Velocity Shape Function(left) and Pressure Shape Function(right)

time, we use the backward Euler method which is an implicit scheme. At each time
step, the Navier-Stokes equations are linearized by the following.

ukn − un−1 − ∆t
(
ν∆ukn + (un−1 · ∇)ukn + ∇p

)
= ∆tf

Here, un−1 is the solution of (n − 1)-th time step, and ukn is the solution of inner
iteration. The solution of n-th step is obtained when the successive error of the inner
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iteration is small enough. The linear system consists of the discrete momentum
equation and the discrete continuity equation, and it is a kind of saddle point
problem. We used the bi-conjugate gradient method as a solver. For the numerical
integration, we used two by two Gaussian-quadrature on the square back-cell.

As shown in tables 2,3 and 4 for the Stokes equations and in tables 5, 6 and
7 for the Navier-Stokes equations, the L2−errors for the velocity and the pressure
coincide with our analysis. Furthermore, we can view the uniform boundedness
of these errors in time. The L2−error plots for the velocity and pressure at time
t = 1.0 are shown in Fig. 3 as a reference.
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Figure 3. Decay rates of relative errors at time t = 1.0

Nodes Stokes equations
Vel. × Pres. t=0.01 t=0.1 t=0.5 t=1.0

121 × 36 1.98907220e-02 3.99434253e-02 4.46688766e-02 4.46728916e-02
441 × 121 4.52804333e-03 1.01725811e-02 1.07787172e-02 1.07787461e-02
961 × 256 1.93789420e-03 4.48012356e-03 4.65470350e-03 4.65470487e-03
1681 × 441 1.06246032e-03 2.47702703e-03 2.54934122e-03 2.54934138e-03
2601 × 676 6.64661575e-04 1.55276747e-03 1.58960783e-03 1.58960787e-03

Table 2. Relative L2− errors of U (
‖U−u‖

L2

‖u‖
L2

) for the Stokes equations.
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Nodes Stokes equations
Vel. × Pres. t=0.01 t=0.1 t=0.5 t=1.0

121 × 36 1.85910324e-01 1.84439007e-01 1.84491401e-01 1.84491503e-01
441 × 121 9.18278031e-02 9.16429909e-02 9.16467639e-02 9.16467642e-02
961 × 256 6.10325832e-02 6.09773132e-02 6.09778591e-02 6.09778592e-02
1681 × 441 4.57122666e-02 4.56885780e-02 4.56886702e-02 4.56886702e-02
2601 × 676 3.65417798e-02 3.65294102e-02 3.65294126e-02 3.65294126e-02

Table 3. Relative H1− errors of U (
‖U−u‖

H1

‖u‖
H1

) for the Stokes equations.

Nodes Stokes equations
Vel. × Pres. t=0.01 t=0.1 t=0.5 t=1.0

121 × 36 2.73942903e-01 2.37766161e-01 2.30324142e-01 2.30317872e-01
441 × 121 7.60134539e-02 6.93491934e-02 6.86912738e-02 6.86912425e-02
961 × 256 3.80363521e-02 3.56011420e-02 3.54455531e-02 3.54455518e-02
1681 × 441 2.36609598e-02 2.24827693e-02 2.24265704e-02 2.24265703e-02
2601 × 676 1.64912408e-02 1.58257902e-02 1.58000068e-02 1.58000068e-02

Table 4. Relative L2− errors of P (
‖P−p‖

L2

‖p‖
L2

) for the Stokes equations.

Nodes Navier-Stokes equations( Re = 100 )
Vel. × Pres. t=0.01 t=0.1 t=0.5 t=1.0

121 × 36 1.16159163e-02 1.18839566e-02 1.82552230e-02 3.36833140e-02
441 × 121 2.29975273e-03 2.82557690e-03 1.04839345e-02 2.37514134e-02
961 × 256 9.33575207e-04 1.52808990e-03 7.65000365e-03 1.75373665e-02
1681 × 441 5.01027145e-04 1.09031059e-03 6.02301109e-03 1.38181808e-02
2601 × 676 3.12274611e-04 8.71759828e-04 4.96910134e-03 1.13874765e-02

Table 5. Relative L2− errors of U (
‖U−u‖

L2

‖u‖
L2

) for the Navier-

Stokes equations.

Nodes Navier-Stokes equations( Re = 100 )
Vel. × Pres. t=0.01 t=0.1 t=0.5 t=1.0

121 × 36 1.89041294e-01 1.89161988e-01 1.91995761e-01 1.97861163e-01
441 × 121 9.22401536e-02 9.23304300e-02 9.37851805e-02 9.75519405e-02
961 × 256 6.11540663e-02 6.12214862e-02 6.21251236e-02 6.47707073e-02
1681 × 441 4.57620074e-02 4.58120646e-02 4.64570953e-02 4.84889811e-02
2601 × 676 3.65665149e-02 3.66046394e-02 3.71038617e-02 3.87532709e-02

Table 6. Relative H1− errors of U (
‖U−u‖

H1

‖u‖
H1

) for the Navier-

Stokes equations.

4.3. The lid driven cavity flow. Though we studied problems with the homoge-
neous boundary condition for the velocity, the driven cavity flow is calculated as an
example of problems with the non-homogeneous boundary condition. In figure 4,
the streamlines and the contour lines of the pressure and the vorticity are depicted
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Nodes Navier-Stokes equations( Re = 100 )
Vel. × Pres. t=0.01 t=0.1 t=0.5 t=1.0

121 × 36 1.02315848e-02 1.02625024e-02 1.06547697e-02 1.10323413e-02
441 × 121 2.59315599e-03 2.63763555e-03 3.41949068e-03 4.06204224e-03
961 × 256 1.16957475e-03 1.23078139e-03 2.01078538e-03 2.57137796e-03
1681 × 441 6.66906869e-04 7.37124165e-04 1.44739887e-03 1.91481713e-03
2601 × 676 4.32326722e-04 5.07244332e-04 1.14198542e-03 1.53618512e-03

Table 7. Relative L2− errors of P (
‖P−p‖

L2

‖p‖
L2

) for the Navier-

Stokes equations.

at time t = 0.1, 0.5, 2.0 with Re = 100. The profiles at time t = 2.0 coincide with
the solution of the stationary case(Figure 4 in [3]).
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(i) Vorticity : t = 2.0

Figure 4. Navier-Stokes(Re = 100) driven cavity flows
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5. Conclusions. The meshfree method for the non-stationary incompressible Stokes
and the Navier-Stokes problems are analyzed mathematically, and several numer-
ical examples are implemented successfully. In this paper, we have obtained the
solvability of the discrete Stokes equations and the Navier-Stokes equations by the
meshfree method. And we have shown the convergence of the numerical solutions
to the true solutions for each case, which result in the L2-error estimate of the ve-
locity. The numerical results show good agreement with the theoretic analysis for
the convergence of the discrete solutions.
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