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Abstract. Mathematical analysis is achieved on a meshless method for the
stationary incompressible Stokes and Navier-Stokes equations. In particular,
the Moving Least Square Reproducing Kernel(MLSRK) method is employed.
The existence of discrete solution and its error estimate are obtained. As a
numerical example for convergence analysis, we compute the numerical solu-
tions for these equations to compare with exact solutions. Also we solve the
driven cavity flow numerically as a test problem.

1. Introduction. The objective of this paper is to develop the numerical theory for
the Galerkin formulation using the MLSRK(moving least square reproducing ker-
nel) method especially for the stationary incompressible Stokes and Navier-Stokes
equations.

Several methods for meshless approximations were proposed for various ap-
plications. We note that Smoothed Particle Hydrodynamics(SPH) by Gingold
and Monaghan(1977)[1], Reproducing Kernel Particle Method(RKPM) by Liu et
al.(1995)[6, 5], Diffuse Element Method(DEM) by Nayroles et al.(1992)[11], Ele-
ment Free Galerkin Method(EFG) by Belytschko et al.(1994)[9] and Partition of
Unity Finite Element Method(PUFEM) by Babuška and Melenk(1995)[10] were
proposed. In particular, we are interested in the applications of Moving Least
Square Reproducing Kernel Galerkin Method(MLSRK) proposed by Liu et al.(1996)[8]
to the incompressible Navier-Stokes equations. One distinct advantage of this
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method over the standard finite element method is that it requires simple dis-
tribution of nodes, not the complex mesh generation depend on the geometry of
the flow domain. Another advantage is that the desired regularity of the approxi-
mate solution can be readily achieved by introducing suitable window function with
sufficient regularity.

Though there has been keen interest in developing meshless approximations for
the Galerkin formulation of the partial differential equations in engineering, math-
ematical analysis on the existence and convergence criterion of discrete solution
has not been made yet as far as we have known. In this paper, We have obtained
the solvability and the convergence for successive approximation of solution of the
Stokes and the Navier-Stokes equations, which results in the H1−error estimate of
the velocity.

As a numerical example, we calculate the numerical solutions for the Stokes and
the Navier-Stokes equations in two dimension and the errors of each components
of the numerical solution are tabulated. Also the driven cavity flow is calculated
numerically as a test case with non-zero boundary condition and the several plots
for the numerical solution are shown in this paper.

2. Moving Least Square Reproducing Kernel Method.

2.1. Reproducing Formula.
Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω and u(x) be a

smooth function defined in Ω. Define the set of all basis polynomials of order less
than or equal to m

Pm(x) = {Pα(x) = xα1
1 · · ·xαn

n | |α| = α1 + · · · + αn ≤ m}.
Here, the number of all components in Pm(x) is (n+m)!

n!m! . We choose a smooth non-
negative window function Φ(x) which has a compact support, say, suppΦ ⊂ B1(0).
To describe the MLSRK approximation of u(x) with m−th order consistency, let
us introduce a localized error residual functional

J(a(x̄)) ≡
∫
Ω

∣∣∣∣u(x)− Pm

(
x− x̄

ρ

)
· a(x̄)

∣∣∣∣2 Φρ(x− x̄) dx ,

where Φρ(x − x̄) =
1
ρn

Φ
(
x− x̄

ρ

)
and ρ > 0 is a dilation parameter. Minimizing

the quadratic functional J(a(x̄)), we find that the minimizer a(x̄) satisfies

a(x̄) = M−1(x̄)
∫
Ω

PT
m

(
x− x̄

ρ

)
u(x)Φρ(x− x̄) dx,

here the matrix M(x̄) is so called the moment matrix defined by

M(x̄) ≡
∫
Ω

PT
m

(
x− x̄

ρ

)
Pm

(
x− x̄

ρ

)
Φρ(x− x̄) dx. (1)

Since the polynomial basis Pα(x)’s are linearly independent, M(x̄) is always invert-
ible and detM(x̄) > 0. Now the local approximation of u(x) near x̄ is obtained as
the following :

U(x, x̄) ≡ Pm

(
x− x̄

ρ

)
· a(x̄)

= Pm

(
x− x̄

ρ

)
M−1(x̄)

∫
Ω

PT
m

(
y − x̄

ρ

)
u(y)Φρ(y − x̄) dy.
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For fixed x̄ ∈ Ω, the manipulation is the standard weighted least square procedure.
Since x̄ is an arbitrary point in Ω for the weight least square procedure, we may
choose x̄ = x and we obtain a global approximation of u(x). More precisely the
global approximation operator is defined by

Gu(x) ≡ U(x, x) (2)

= Pm(0)M−1(x)
∫
Ω

PT
m

(
y − x

ρ

)
u(y)Φρ(y − x) dy.

This formulation is so called reproducing kernel formulation by Liu et al.(1995).
For simplicity, we define the correction function as

C(ρ, y − x, x) = Pm(0)M−1(x)PT
m

(
y − x

ρ

)
and the kernel function as

Kρ(y − x, x) ≡ C(ρ, y − x, x)Φρ(y − x) ,

then the global approximation (2) is written in a convolution form

Gu(x) =
∫
Ω

Kρ(y − x, x)u(y) dy. (3)

For this global approximation, any polynomial of order less than or equal to m
satisfies

Gu(x) = u(x), (4)

and we call this property as m−th order consistency.
To show m−th order consistency for the above MLSRK approximation, let u(y)

be a polynomial of order less than or equal to m. Then it is represented by the form

u(y) =
∑

|β|≤m

cβ(x)
(
y − x

ρ

)β

,

where β = (β1, · · · , βn) is a multi-index and xβ = xβ1
1 · · ·xβn

n for x ∈ Rn. Here we
note that the first coefficient cβ0(x) with β0 = (0, · · · , 0) is the polynomial u(x),
i.e.,

cβ0(x) = u(x). (5)

From the definition of moment matrix (1) and the reproducing kernel approximation
(3) we have

Gu(x) = Pm(0)M−1(x)
∫
Ω

PT
m

(
y − x

ρ

) ∑
|β|≤m

cβ(x)
(
y − x

ρ

)β

Φρ(y − x) dy

= Pm(0)
∑

|β|≤m

cβ(x)eβ = cβ0(x) ,

where eβ = [0, · · · , 1, · · · , 0]T is the β−th standard basis of dimension (n+m)!
n!m! .

Therefore, from the identity (5), we have the m−th order consistency of (4).
Now we define the shape function to develop the theory of MLSRK for the Stokes

and the Navier-Stokes equations. For a given set of nodes Λ = {xi|i = 1, · · · , NP},
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employing discretized moment matrix

Mh(x) =
NP∑
i=1

PT

(
x− xi
ρi

)
P
(
x− xi
ρi

)
Φρi

(x− xi) , (6)

we define discretized kernel function

Kh
ρi

(x− xi, x) = Ch(ρi, x− xi, x)Φρi
(x− xi) (7)

= P(0)(Mh)
−1

(x)PT

(
x− xi
ρi

)
Φρi

(x− xi) .

This set of functions will be used in this paper as MLSRK shape functions, which
is called simply shape functions if there is no confusion. Also we will denote briefly
Kh

ρi
(x− xi, x) as φi(x) for the window function Φ .

2.2. Node Distribution.
In the finite element method, the mesh generation follows quasi-uniform or reg-

ular condition. Similarly, we have the following condition. Node set is not concen-
trated in some region of domain, and the support of each shape function overlap
sufficiently many times with other shape function’s support. The overlapping con-
dition ensures the invertibility of the moment matrix defined in (6). In detail, we
want each point x ∈ Ω is contained in the supports of at most L shape functions
where L is some fixed positive integer independent of the number of nodes, i.e.,
for the support of shape function, the maximum number of intersection is bounded
independent of the number of nodes. In this manner we define the followings.

Definition 2.1. Let Λ = {xi|i = 1, · · · , NP} be the set of nodes. We define Λ be
a regular node set if the followings hold.
i) There exist C1 > 0 independent of NP such that

min
i

hi ≥ C1max
i

hi

where hi = minj �=i|xi − xj |. So there is a characteristic distance h such that
h ≤ hi ≤ C2h for all i.
ii) Let ρi = γhi, for some fixed γ > 1. There exist Cγ > 0 depend only on γ such
that

min
i

N(i, γ) ≥ Cγ max
i

N(i, γ)

where N(i, γ) be the number of nodes contained in Bρi
(xi). We also let ρ = γh be

characteristic radius.

Remark 1. Let us call γ in Definition 2.1 as dilation ratio for regular node set.
The parameter ρi will be used as dilation parameter of shape function φi(x) so that
the support of φi(x) is contained in Bρi

(xi). It is not hard, but rather complicated,
to check γ > m to ensure invertibility of moment matrix while generating shape
functions with m-th order consistency.

Definition 2.2. Let A = {φi|i = 1, · · · , NP} be the set of MLSRK shape func-
tions generated by the window function Φ for the regular node set Λ = {xi|i =
1, · · · , NP}, with dilation parameter ρi as defined in the Definition 2.1. Then the
shape function set A is admissible if there is a positive constant β0 independent of
ρ such that

β−1
0 ρn‖a‖2 ≥

n∑
α=1

NP∑
i,j=1

∫
Ω

φiφj dx aαi aαj ≥ β0ρ
n‖a‖2 , (8)
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for all aα ∈ RNP , α = 1, ..., n.

Note that the above regular and admissibility conditions imply certain uniform
condition for the node distance and support radius of shape functions. In making
shape function, dilation parameter ρi and node distance hi are depend on each
xi, but with assuming regular node distribution, we may consider ρi and hi as
independent parameter with respect to each xi.

2.3. Projection Error Estimate.
For the convergence analysis, we need interpolation error estimate between the

solution space and the projection generated by the set of shape functions. We define
discrete projection and find projection error estimate.

Definition 2.3. Let A = {φi|i = 1, · · · , NP} be the admissible set of MLSRK
shape functions generated by the window function Φ for the regular node set Λ =
{xi|i = 1, · · · , NP}. Let u(x) ∈ C0(Ω) be a function and ρi > 0 is a dilation
parameter defined in the Definition 2.1. We define the discrete projection as

Rm
ρ,hu(x) ≡

NP∑
i=1

u(xi)φi(x) =
∑

xi∈Λ(x)
u(xi)φi(x) ,

where φi(x) = Kh
ρi

(x− xi, x) as in (7) and Λ(x) = {xi ∈ Λ|x ∈ supp (φi(x)) ∩ Ω̄}.
Here, m denotes the order of generating polynomial basis Pm, ρ is the characteristic
dilation parameter and h stands for the distance between the nodes.

The following theorem implies that the projection error converges to zero as we
enlarge the node set holding regular condition.

Theorem 2.1. Assume the window function Φ(x) ∈ Cm
0 (Rn) and v(x) ∈ Cm+1(Ω),

where Ω is a bounded open set in Rn. Let Λ = {xi|i = 1, · · · , NP} be a regular node
set and A = {φi|i = 1, · · · , NP} be the set of admissible shape functions. Suppose
the boundary of Ω is smooth and suppφi∩ Ω̄ is convex for each i. If m and p satisfy

m >
n

p
− 1 ,

then the following interpolation estimate holds

‖v −Rm
ρ,h v‖Wk,p(Ω) ≤ Ck ρ

m+1−k ‖v‖Wm+1,p(Ω), for all 0 ≤ k ≤ m , (9)

here ρ stands for the characteristic dilation parameter, i.e., some positive number
satisfying min

i
ρi ≤ ρ ≤ max

i
ρi.

Proof. Let v(x) ∈ Cm+1(Ω) be given. By definition of projection, we have

Rm
ρ,h v(x) =

∑
xi∈Λ(x)

v(xi)φi(x)

and taking derivatives yields, for |β| ≤ m,

Dβ
x Rm

ρ,h v(x) =
∑

xi∈Λ(x)
v(xi)Dβ

x φi(x) .
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Evaluating the value v(xi) by Taylor expansion of v at x, we have

v(xi) =
∑

|α|≤m

1
α !

(xi − x)αDα
x v(x)

+
∑

|α|=m+1
c(α)

∫ 1

0

(1 − θ)mDα
x v(x + θ(xi − x))dθ(xi − x)α .

Using the above expansion and the reproducing property of shape functions, we
have the identity

Dβ
x Rm

ρ,h v(x) =
∑

xi∈Λ(x)

 ∑
|α|≤m

1
α !

(xi − x)αDα
x v(x)

+
∑

|α|=m+1
c(α)

∫ 1

0

(1 − θ)mDα
x v(x + θ(xi − x))dθ(xi − x)α

Dβ
x φi(x)

=
∑

|α|≤m

1
α !

Dα
x v(x)α !δαβ

+
∑

xi∈Λ(x)

 ∑
|α|=m+1

c(α)
∫ 1

0

(1 − θ)mDα
x v(x + θ(xi − x)) dθ

 (xi − x)α Dβ
x φi(x) .

Therefore we have∣∣Dβ
x v(x)−Dβ

x Rm
ρ,h v(x)

∣∣
≤ c(m)

∑
xi∈Λ(x)

 ∑
|α|=m+1

∫ 1

0

(1 − θ)m|Dα
x v(x + θ(xi − x))| dθ

 |xi − x|m+1 |Dβ
x φi(x)| .

Considering scaling, we find

|Dβ
x φi(x)| ≤ cρ−|β| ,

where c = maxi supz
∣∣Dβ

x Kh
1 (z − xi, z)

∣∣, note that Kh
ρi

(x − xi, x) = φi(x). Also if
x ∈ supp φi(x), then |xi − x| ≤ cρ.
Hence we find the following inequalities using the Minkowski inequality∫
Ω

∣∣Dβ
x v(x)−Dβ

x Rm
ρ,h v(x)

∣∣p dx

≤ c

∫
Ω

 ∑
xi∈Λ(x)

∑
|α|=m+1

∫ 1

0

(1 − θ)m|Dα
x v(x + θ(xi − x))| dθ |xi − x|m+1 |Dβ

x φi(x)|
p

dx

≤ cρp(m+1−|β|) ∑
|α|=m+1

∫
Ω

∫ 1

0

(1 − θ)m
∑

xi∈Λ(x)
|Dα

x v(x + θ(xi − x))|χsupp (φi(x)) dθ

p

dx

≤ cρp(m+1−|β|) ∑
|α|=m+1

∫ 1

0

∫
Ω

(1 − θ)mp
∑

xi∈Λ(x)

∣∣Dα
x v(x + θ(xi − x))χsupp (φi(x))

∣∣p dx
 1

p

dθ


p

.
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Now we let y = x + θ(xi − x), then∫
Ω

|Dα
x v(x + θ(xi − x))χsupp (φi(x))|p dx ≤

∫
Bc(1−θ)ρ(xz)

|Dα
x v(y)|p dy

(1 − θ)n
.

So we have

∑
|α|=m+1

∫ 1

0


∫
Ω

(1 − θ)mp

 ∑
xi∈Λ(x)

|Dα
x v(x + θ(xi − x))|χsupp (φi(x))

p

dx


1
p

dθ


p

≤ cL
∑

|α|=m+1

[∫ 1

0

(1 − θ)m−n
p

(∫
Ω

|Dα
x v(y)|p dy

) 1
p

dθ

]p
,

here L = maxi N(i, ρ) as in Definition 1. Therefore if m > n
p − 1, then

∑
|α|=m+1

∫ 1

0


∫
Ω

(1 − θ)mp

 ∑
xi∈Λ(x)

|Dα
x v(x + θ(xi − x))|χsupp (φi(x))

p

dx


1
p

dθ


p

≤ c
∑

|α|=m+1
‖Dα

x v‖pLp .

Therefore we have, for |β| = k ≤ m,∫
Ω

∣∣Dβ
x v(x)−Dβ

x Rm
ρ,h v(x)

∣∣p dx ≤ c ρp(m+1−k) ‖v‖ p
Wm+1,p

if m > n
p − 1.

For the discrete projection, we find the following Sobolev type embedding theo-
rem which will be used for the analysis of the Navier-Stokes equations.

Theorem 2.2. We assume suppφi ∩ Ω is convex. Suppose v ∈ C10 (Ω) and the
window function Φ ∈ Cm

0 (Rn),m ≥ 1. If p > n holds, then we have the following
inequalities

‖∇Rm
ρ,h v‖Lp ≤ C‖∇v‖Lp , (10)

sup
Ω

|Rm
ρ,hv| ≤ C|Ω| 1

n− 1
p ‖∇v‖Lp . (11)

Proof. Let ρ be given and Λ = {xi|i = 1, · · · , NP} be the regular node set. By the
definition of the discrete projection Rm

ρ,h, we have

Rm
ρ,hv(x) =

∑
xi∈Λ

v(xi)φi(x)

and
∂

∂xα
Rm

ρ,hv(x) =
∑
xi∈Λ

v(xi)
∂

∂xα
φi(x)

where x ∈ Ω and xα, α = 1, · · · , n is component of x. By Taylor series expansion
of the function v(x) for given y, we can write

v(xi) = v(y) +
∫ 1

0

(xi − y) · ∇yv(y + θ(xi − y)) dθ.
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Hence we obtain

∂

∂xα
Rm

ρ,hv(x) =
∑
xi∈Λ

v(x)
∂

∂xα
φi(x)

+
∑
xI ı∈Λ

∫ 1

0

(xi − x) · ∇yv(x + θ(xi − x)) dθ
∂

∂xα
φi(x).

From the linear consistency of the shape functions, the first summation of the above
equation vanishes, i.e., ∑

xi∈Λ
v(x)

∂

∂xα
φi(x) = 0.

Also our construction of the shape function φi(x) implies

|xi − x| |∇xφi(x)| ≤ C

and each x is contained in the finite number of supports of φi(x)’s from the
overlapping assumption of the shape functions. We set Λ(x) = {xi ∈ Λ|x ∈
support of φi(x)} and the number of the element of Λ(x) is bounded by for some
fixed number L. Also we note that support of φi(x) ⊂ Bcρ(xi) for some constant
c independent of ρ. Thus it follows that∑

xi∈Λ

∫ 1

0

|xi − x| |∇xv(x + θ(xi − x))| dθ
∣∣∣∣ ∂

∂xα
φi(x)

∣∣∣∣
≤ C

∑
xi∈Λ(x)

χBcρ(xi)

∫ 1

0

|∇v(x + θ(xi − x))| dθ.

Therefore we have the following estimates, from the Hölder inequality and the
Minkowski inequality,

‖∇Rm
ρ,hv‖Lp ≤ C

∫
Ω

 ∑
xi∈Λ(x)

χBcρ(xi)

∫ 1

0

|∇v(x + θ(xi − x))| dθ
p

dx


1
p

(12)

≤ C

∫ 1

0

dθ

∫
Ω

∑
xi∈Λ(x)

χBcρ(xi)|∇v(x + θ(xi − x))|p dx
 1

p

≤ C

∫ 1

0

(1 − θ)−
n
p dθ

[∫
Ω

|∇v(y)|p dy
] 1

p

≤ CL‖∇v‖Lp

Note that the last inequality in (12), the finite intersection property of shape func-
tions is crucial. Also remember our assumption p > n.

For the L∞-norm estimate, we have

sup
Ω

|Rm
ρ,hv| ≤ C|Ω| 1

n− 1
p ‖∇Rm

ρ,hv‖Lp ≤ C|Ω| 1
n− 1

p ‖∇v‖Lp .

The first part of the above inequalities results from the usual Sobolev embedding
and the second part have been proved at (12). Therefore we have proved our
theorem.
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2.4. Test Function Space and Boundary Transformation.
To develop the theory using the Galerkin formulation based on MLSRK method,

it is necessary to clarify the test function space. In this subsection we define the
test function space denoted by V h

0 and describe how to construct this space. Also
we prove the projection error estimate for this space.

Let Λ = {xi|i = 1, · · · , NP} be a regular node set and A = {φi|i = 1, · · · , NP}
be a set of admissible shape functions which is generated from the smooth window
function Φ. First we divide node set Λ to three parts and re-indexing as the
following for convenience. ΛΓ = {x1, · · · , xNΓ} is the set of boundary node points.
ΛΓ∗ = {xNΓ+1, · · · , xNΓ∗ } is the set of boundary influence node points, i.e., shape
functions associated with these node points have non-vanishing values at some
boundary node points. Λ0 = {xNΓ∗+1, · · · , xNP } is the set of interior node points
such that shape function correspond to this node point has compact support in Ω.
We define the discrete function space V h by

V h(Ω) = {u(x) =
NP∑
i=1

ci φi(x) |φi(x) ∈ A, ci ∈ R, x ∈ Ω}.

Also V h
0 is defined by

V h
0 (Ω) = {v(x) ∈ V h(Ω) | v(xi) = 0 for any boundary nodexi ∈ ∂Ω}.

Since it is complicated to describe the function space V h
0 with shape function

set A, we consider the following linear transformation.

φ̂i(x) =

{∑
j

dij φj(x) for 1 ≤ i ≤ NΓ∗

φi(x) for NΓ∗ < i
(13)

where [dij ] = [φi(xj)]−1, 1 ≤ i, j ≤ NΓ∗ . We call this transformation as boundary
transformation. Note that φ̂i(xk) = δik, for i, k = 1, · · · , NΓ∗ .

Any function u(x) ∈ V h(Ω) satisfies

u(x) =
NΓ∗∑
i=1

ciφi(x) +
NP∑

i=NΓ∗+1

ciφi(x)

=
NΓ∗∑
i=1

NΓ∗∑
j=1

ciφi(xj)

 φ̂j(x) +
NP∑

i=NΓ∗+1

ciφi(x)

=
NΓ∗∑
j=1

(
NΓ∗∑
i=1

ciφi(xj)

)
φ̂j(x) +

NP∑
j=NΓ∗+1

cj φ̂j(x) ,

also v(x) ∈ V h
0 (Ω) satisfies

v(x) =
NΓ∗∑

j=NΓ+1

(
NΓ∗∑
i=1

ciφi(xj)

)
φ̂j(x) +

NP∑
j=NΓ∗+1

cj φ̂j(x) ,

since v(xk) = 0 for k = 1, · · · , NΓ and φ̂j(xk) = δjk for 1 ≤ j, k ≤ NΓ∗ . Hence we
may consider Ã = {φ̂i |φi ∈ A} as a new basis for V h(Ω) and naturally Â = {φ̂i ∈
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Ã |xi ∈ Γ∗ ∪ Γ0} is the basis of V h
0 (Ω), i.e.

V h
0 (Ω) = {v(x) =

NP∑
i=NΓ+1

ciφ̂i(x) | φ̂i ∈ Â, ci ∈ R}.

Remark 2. There is an issue of invertibility of [φi(xj)]. This is closely related
to the shape of window function Φ and the dilation ratio γ. Basically, the shape
function is similar to the window function. Hence we need to design the window
function Φ and to choose the dilation ratio γ so that the matrix [φi(xj)] is invertible.

Definition 2.4. Let A = {φi|i = 1, · · · , NP} be the admissible set of shape func-
tions generated by the window function Φ ∈ Cm

0 (Rn) for the regular node set
Λ = {xi|i = 1, · · · , NP}. Here φi’s satisfy m-th order consistency, and dilation
ratio is γ. We define Φ as proper window function of m-th order and γm as proper
dilation ratio if ∑

j �=i
|φi(xj)| < cρ2m ,

for all i = 1, · · · , NP .

Example Consider Ω = [0, 1] × [0, 1] ⊂ R2, and the regular node set

Λ =
{(

i

n
,
j

n

)
| i = 0, · · · , n j = 0, · · · , n

}
,

where n is some positive constant. Choose the proper window function of second
order as

Φ(x, y) = f(x) f(y) ,

where f is defined by

f(x) =


−128x4 + 1 0 ≤ x < 1

4
128(x− 1

2 )
4 1

4 ≤ x < 1
2

(x− 1
2 )
2(x− 1)2 1

2 ≤ x < 1
0 1 ≤ x .

Also choose the proper dilation ratio as

γ =
2

1− h
, where h =

1
n

.

As a summary, using boundary transformation, we defined V h
0 (Ω) from V h(Ω).

Now we define the test function space for MLSRK method as

V h
0 (Ω) ≡ {u(x) =

NP∑
i=NΓ+1

ciφ̂i(x) |x ∈ Ω, φ̂i ∈ Â, ci ∈ R}.

The next thing to study is projection for C0(Ω), the space of continuous function
with compact support in Ω. For this, we define new projection.

Definition 2.5. Let A = {φi | i = 1, · · · , NP} be the set of admissible shape func-
tions over the regular node set Λ = {xi | i = 1, · · · , NP} with window function
Φ ∈ Cm

0 (Rn), here ΛΓ = {xi | i = 1, · · · , NΓ} is the set of boundary node. Sup-
pose that Â = {φ̂i | i = 1, · · · , NP} is the transformed shape functions using the
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boundary transformation(13). Define a discrete projection of function in C0(Ω) as

R̂m
ρ,hu(x) ≡

NP∑
i=NΓ+1

u(xi)φ̂i(x) . (14)

Here m, ρ and h represent order of generating polynomial basis, dilation parameter
for φi and node distance.

As a Corollary of Theorem 2.1, we find the following projection error estimate
for R̂m

ρ,h.

Corollary 2.1. Assume that Φ(x) ∈ Cm
0 (Rn) is a proper window function of m-

th order. The domain Ω ⊂ Rn is bounded open set. Let Λ = {xi|i = 1, · · · , NP}
be a regular node set and Â = {φ̂i | i = 1, · · · , NP} be the boundary transformed
function set of admissible shape function set A = {φi | i = 1, · · · , NP}, here the
dilation ratio γ for φi is proper ratio of Φ(x). Suppose v(x) ∈ Cm+1

0 (Ω) and

m >
n

p
− 1 .

Then the following interpolation estimate holds

‖v − R̂m
ρ,h v‖Wk,p(Ω) ≤ Ck ρ

m+1−k ‖v‖Wm+1,p(Ω), for all 0 ≤ k ≤ m . (15)

Proof. Since we have

|Dβ
xv(x)−Dβ

xR̂m
ρ,h v(x)| ≤ |Dβ

xv(x)−Dβ
xRm

ρ,h v(x)|+ |Dβ
xRm

ρ,h v(x)−Dβ
xR̂m

ρ,h v(x)| ,

and from Theorem 2.1, it is enough to show

‖Rm
ρ,h v − R̂m

ρ,h v‖Wk,p(Ω) ≤ Ck ρ
m+1−k ‖v‖Wm+1,p(Ω) .

Note that v(x) ∈ Cm+1
0 (Ω) and φi(x) = φ̂i(x) for xi ∈ Λ0. Hence we have

Dβ
xRm

ρ,hv(x)−Dβ
xR̂m

ρ,hv(x) =
∑

xi∈ΛΓ∗

v(xi)
(
Dβ

xφi(x)−Dβ
x φ̂i(x)

)
(16)

=
∑

xi∈ΛΓ∗∩Λ(x)
v(xi)

(
Dβ

xφi(x) −Dβ
x φ̂i(x)

)
−

∑
xi∈ΛΓ∗∩Λc(x)

v(xi)

 ∑
xj∈Λ(x)

dijD
β
xφj(x)

 ,

since φi(x) = 0 for xi ∈ Λc(x). Here Λc(x) = Λ − Λ(x), [dij ] = [φi(xj)]−1 ≡ G−1

and refer previous definitions for notations.
Note that ‖G−1‖ is bounded. From the assumption of proper window function,

smallness of off-diagonal terms for G is guaranteed. Hence using the consistency of
shape functions, we observe

G = I − ρ2mG∗ , (17)
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where G∗ is a matrix with ‖G∗‖ = O(1). Now from the Sobolev inequality, we have∣∣∣∣∣∣
∑

xi∈ΛΓ∗∩Λ(x)
v(xi)

(
Dβ

xφi(x)−Dβ
x φ̂i(x)

)∣∣∣∣∣∣
≤

∑
xi∈ΛΓ∗∩Λ(x)

∑
xj∈Λ(x)

∣∣∣v(xi) (I −G−1)
ij
Dβ

xφj(x)
∣∣∣

≤ c‖v‖Wm+1,p(Ω)

∑
xj∈Λ(x)

∣∣Dβ
xφj(x)

∣∣ ∑
xi∈ΛΓ∗∩Λ(x)

∣∣∣(I −G−1)
ij

∣∣∣
≤ c‖v‖Wm+1,p(Ω)Lρ

2m
∑

xj∈Λ(x)

∣∣Dβ
xφj(x)

∣∣ ,

since ‖G−1‖ is bounded and∑
xi∈ΛΓ∗∩Λ(x)

∣∣∣(G− I)ij
∣∣∣ ≤ L

∑
i�=j

|φj(xi)| < cLρ2m .

For the second part of (16),∣∣∣∣∣∣
∑

xi∈ΛΓ∗∩Λc(x)

v(xi)

 ∑
xj∈Λ(x)

dijD
β
xφj(x)

∣∣∣∣∣∣
≤

∑
xj∈Λ(x)

∑
xi∈ΛΓ∗∩Λc(x)

∣∣v(xi)dijDβ
xφj(x)

∣∣
≤ c‖v‖Wm+1,p(Ω)

∑
xj∈Λ(x)

∣∣Dβ
xφj(x)

∣∣ ∑
xi∈ΛΓ∗∩Λc(x)

∣∣dij∣∣


≤ c‖v‖Wm+1,p(Ω)ρ
2m

 ∑
xj∈Λ(x)

∣∣Dβ
xφj(x)

∣∣ .

In above inequalities, the inequality∑
xi∈ΛΓ∗∩Λc(x)

∣∣dij∣∣ ≤ cρ2m

for xj ∈ Λ(x), is justified from the assumptions and considering Gram-Schmidt
process for making dij .

Hence by following similar argument in Theorem 2.1, we have

‖Dβ
xRm

ρ,hv −Dβ
xR̂m

ρ,h‖Wk,p(Ω) ≤ c‖v‖Wm+1,p(Ω)ρ
m+1−k

(
L2|∂Ω| 1p ρ 1

p + Lρ
n
p

)
,

for all 0 ≤ k ≤ m, and this completes the proof.

There is a Sobolev type embedding theorem for R̂m
ρ,h also, and we state it as a

corollary of Theorem 2.2.
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Corollary 2.2. Suppose v ∈ C10 (Ω) and the proper window function Φ ∈ Cm
0 (Rn),m ≥

1. If p > n holds, then we have the following inequalities

‖R̂m
ρ,h v‖Lp ≤ C‖∇v‖Lp , (18)

sup
Ω

|R̂m
ρ,hv| ≤ C|Ω| 1

n− 1
p ‖∇v‖Lp (19)

The above corollary can be proved directly from Theorem 2.2 by considering the
difference ∇Rm

ρ,h v(x) − ∇̂Rm
ρ,h v(x). Or one can prove it using Corollary 2.1 and

the Poincaré inequality.

3. Applications of the MLSRK Method to Incompressible Flows.
In this section, we study the stationary incompressible flow with zero velocity

on the boundary. Throughout this section, we suppose the following. Let Ω be
a bounded domain in Rn with smooth boundary. ΛV = {xVi | i = 1, · · · , NP} is
a regular node set in Ω, and AV = {φi | i = 1, · · · , NP} is an admissible shape
function set with m-th order consistency. Shape function set AV is made by proper
window function Φ(x) ∈ Cm+1

0 (Rn) of m-th order and proper dilation ratio γ.
After re-indexing, let Λ̂V = {xVi | i = 1, · · · , N̂P} be a set of interior node and

boundary influence node of ΛV , and ÂV = {φ̂i | i = 1, · · · , N̂P} be a boundary
transformed shape function set of AV . Hence ÂV is a basis of V h

0 (Ω), where V h
0 (Ω)

is a test function space as defined in the previous section. Λ̂V and ÂV will be used
for velocity approximation. Note that even transformed shape function φ̂i ∈ ÂV

does not vanish on the entire boundary ∂Ω, it has zero value only on the boundary
node points. But the L∞ norm of φ̂i ∈ ÂV is sufficiently small on the boundary
of Ω so that ‖φ̂i‖L∞(∂Ω) ≤ cρ2m, as long as the proper window function is used for
shape functions.

For the pressure, let ΛP = {xPj | j = 1, · · · ,MP} be a regular node set in Ω,
and AP = {ψj | j = 1, · · · ,MP} be an admissible shape function set with m-th
order consistency from window function Ψ(x) ∈ Cm

0 (Rn). Here we assume that the
characteristic distance for pressure node is compatible to the characteristic distance
for velocity node, and so is the characteristic support radius of shape function.
Hence the discrete solution space for velocity and pressure will be as followings:

[
V h
0 (Ω)

]n
=

U(x) =
N̂P∑
i=1

uiφ̂i(x) | φ̂i ∈ ÂV ,ui ∈ Rn

 (20)

Mh(Ω) =

P (x) =
MP∑
j=1

pjψj(x) | ψj ∈ AP , pj ∈ R,

∫
Ω

P (x) dx = 0


In addition to the assumption on the node distribution, we assume the technical

hypothesis. It is about the coercivity of the bilinear form which is induced from
the viscous term of governing equations, i.e. we assume that there is a positive
constant β0 independent of ρ such that

1
β0

ρn−2‖a‖2 ≥
NP∑

i,j=NΓ+1

[∫
Ω

∇φ̂i∇φ̂j dx

]
ai aj ≥ β0ρ

n−2‖a‖2 (21)

for all a ∈ RNP−NΓ , where NP is the number of nodes, NΓ is the number of
boundary nodes and n is the dimension of space.
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We denote the discrete projection for velocity as R̂m
ρ,h and for pressure as Sm

ρ,h,
in detail, we have

R̂m
ρ,hu(x) =

N̂P∑
i=1

u(xVi )φ̂i(x), φ̂i ∈ ÂV , (22)

Sm
ρ,hp(x) =

MP∑
j=1

p(xPj )ψj(x), ψj ∈ AP .

For further analysis, we define the following inf-sup condition.

Definition 3.1. We say the pair of shape function sets (ÂV , AP ) satisfies the
inf-sup condition if there exists λ > 0 independent of ρ such that

sup
U∈[V h

0 (Ω)]
n

< divU, P >

‖∇U‖L2
≥ λ‖P‖L2 , (23)

for all P ∈ Mh(Ω).

We find a sufficient condition for (ÂV , AP ) to satisfy the inf-sup condition.

Theorem 3.1. Suppose (ÂV , AP ) satisfies the following inequality, for any j ∈
Φi, i = 1, · · · ,MP ,∣∣∣∣∣

∫
Ω

ψi
∂φ̂j

∂xα
dx

∣∣∣∣∣ ≥ α0ρ
n−1 +

∑
k∈Ψi

∣∣∣∣∣
∫
Ω

ψk
∂φ̂j

∂xα
dx

∣∣∣∣∣ , (24)

where α0 > 0 is a constant and Φi and Ψi are the index sets defined as

Φi = {l |xVl ∈ suppψi},
Ψi = {l | l �= i and suppψl ∩ suppψi �= ∅}.

Then (ÂV , AP ) satisfies the inf-sup condition.

Proof. Let {p1, · · · , pMP } be the pressure coefficients so that the discrete pressure
is given. Let S0 be the index set of pressure nodes. Choose pa1 such that

|pa1 | ≥ |pj |, for all j ∈ S0, (25)

and let Sa1 = {j | suppψj ∩ suppψa1 �= ∅}. Choose pa2 , a2 ∈ S0 − Sa1 such that

|pa2 | ≥ |pj |, for all j ∈ S0 − Sa1 , (26)

and let Sa2 = {j | suppψj ∩ suppψa2 �= ∅}. Choose pa3 , a3 ∈ S0 − (Sa1 ∪ Sa2) such
that

|pa3 | ≥ |pj |, for all j ∈ S0 − (Sa1 ∪ Sa2), (27)

and let Sa2 = {j | suppψj ∩ suppψa2 �= ∅}. Continuing this process, we have a
subset of pressure coefficients such that

{pa1 , pa2 , · · · , paL
}. (28)

From our assumption of finite intersection property, we have

|paj
|2 ≥ 1

H

∑
k∈Saj

|pk|2, (29)
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where H is the maximum number of elements of Saj
for all j = 1, · · · , L. The

maximum intersection number H is independent of the dilation parameter ρ when
we refine or coarsen nodes. Thus, we obtain L∑

j=1

|paj
|2
 1

2

≥ 1√
H

[
MP∑
i=1

|pi|2
] 1

2

. (30)

Now, we choose the value of uαj adequately where uαj is to be the α-th component
of the coefficient of the velocity shape function φ̂j for j = 1, · · · , NP. From our
choice of ak’s, we note that all of the index sets Φak

’s are mutually disjoint. For
each k = 1, · · · , L, let us choose uαj ’s such that, for all j ∈ Φak

,

uαj = pak
sign

(∫
Ω

ψak

∂φ̂j

∂xα
dx

)
. (31)

Otherwise, i.e., if j /∈
L⋃

k=1

Φak
, then we choose uαj = 0. Hence we have

MP∑
i=1

NP∑
j=1

n∑
α=1

pi u
α
j

∫
Ω

ψi
∂φ̂j

∂xα
dx

=
L∑

k=1

NP∑
j=1

n∑
α=1

pak
uαj

∫
Ω

ψak

∂φ̂j

∂xα
dx +

∑
i/∈{a1,··· ,aL}

NP∑
j=1

n∑
α=1

pi u
α
j

∫
Ω

ψi
∂φ̂j

∂xα
dx

=
L∑

k=1

 ∑
j∈Φak

n∑
α=1

pak
uαj

∫
Ω

ψak

∂φ̂j

∂xα
dx +

∑
i/∈{a1,··· ,aL}

∑
j∈Φak

n∑
α=1

pi u
α
j

∫
Ω

ψi
∂φ̂j

∂xα
dx


=

L∑
k=1

∑
j∈Φak

n∑
α=1

|pak
|2
∣∣∣∣∣
∫
Ω

ψak

∂φ̂j

∂xα
dx

∣∣∣∣∣+ ∑
i/∈{a1,··· ,aL}

pi pak

∣∣∣∣∣
∫
Ω

ψi
∂φ̂j

∂xα
dx

∣∣∣∣∣


≥
L∑

k=1

∑
j∈Φak

n∑
α=1

|pak
|2
∣∣∣∣∣

∫
Ω

ψak

∂φ̂j

∂xα
dx

∣∣∣∣∣− ∑
i/∈{a1,··· ,aL}

∣∣∣∣∣
∫
Ω

ψi
∂φ̂j

∂xα
dx

∣∣∣∣∣


≥ nα0
H

MP∑
k=1

|pk|2.

If we normalize the chosen velocity coefficients by

[
MP∑
k=1

|pk|2
] 1

2

and use (31), then

we have

MP∑
i=1

NP∑
j=1

n∑
α=1

pi
uαj[∑NP

j=1 |uαj |2
] 1

2

∫
Ω

ψi
∂φ̂j

∂xα
dx ≥ nα0

H

[
MP∑
k=1

|pk|2
] 1

2

.

Therefore, it completes the proof.
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Remark 3. Theorem 3.1 implies that if every support of velocity shape function
is located at the place where the pressure shape function is steep then the inf-sup
condition is satisfied.

One can suggest to make node distributions to satisfy inf-sup condition as the
following. First, make pressure node distribution xPi . For each pressure node
point xPi , consider adjacent node points which are included in the support of shape
functions at xPi . Now consider mid-points of line segments between xPi and adjacent
node points. Adding all of those mid points to pressure node points, velocity node
distribution is made.

3.1. Stokes Problem.
In this subsection, we study the stationary incompressible Stokes flow with van-

ishing boundary condition. The governing equations are

−ν∆u+∇p = f

∇·u = 0 in Ω , (32)
u = 0 on ∂Ω ,

where the solution (u, p) ∈ Hm+1
0 (Ω)×Hm(Ω)/R, and the function space Hm(Ω)/R

is the set of all Hm(Ω)−functions with zero mean in Ω. Using the MLSRK method,
we prove the existence of the numerical solution and its convergence to the exact
solution. For simplicity, we assume ν = 1.

First we state weak formulation of the Stokes equations. We define a pair
(U, P ) ∈ [V h

0 (Ω)]n × Mh(Ω) is the discrete solution to the Stokes equations (32),
if (U, P ) satisfy

ν

∫
Ω

∇U∇V dx−
∫
Ω

P ∇·V dx =
∫
Ω

f V dx (33)∫
Ω

∇·UQdx = 0 ,

for all V ∈ [V h
0 (Ω)]n and Q ∈ Mh(Ω).

Theorem 3.2. Suppose that Ω ⊂ Rn is bounded domain with smooth boundary,
and we follow all notations and assumptions in the beginning of this section. Sup-
pose that (ÂV , AP ) satisfies the inf-sup condition. Then there is a unique discrete
solution pair (U, P ) to the discrete Stokes equations (33).

Proof. It is enough to find coefficient vectors of velocity uα = [ūα1 , · · · , ūαN̂P
]T , for

α = 1, · · · , n and pressure p̄ = [p1, · · · , pMP ]T for the solution of (33)

U(x) =

U1(x)
...

Un(x)

 =


∑N̂P

i=1 ū
1
i φ̂i(x)
...∑N̂P

i=1 ū
n
i φ̂i(x)

 and P (x) =
MP∑
j=1

pjψj(x) .
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Let us define

Mik =
∫
Ω

∇φ̂i∇φ̂k dx,

Bα
ij = −

∫
Ω

∂φ̂i

∂xα
ψj dx,

fα
i =

∫
Ω

fα φ̂i dx ,

where 1 ≤ i, k ≤ N̂P , 1 ≤ j ≤ MP and α(1 ≤ α ≤ n). Then we obtain the system
of the discrete Stokes equations

N̂P∑
k=1

Mik ū
α
k +

MP∑
j=1

Bα
ij pj = fα

i

NP∑
j=1

Bα
jl ū

α
j = 0 ,

for all i = 1, · · · , N̂P , l = 1, · · · ,MP and α = 1, · · · , n. By defining the assembled
matrices M and B such as

M = Diag(M, · · · ,M), and B = [B1, · · · , Bn]T ,

the discrete Stokes equations (33) is written by matrix form[
M B
BT 0

] [
ū
p̄

]
=
[
f̄
0

]
.

Note that BT is the transpose of B and ū = [ū1, · · · , ūn]T . From the hypothesis
(21), we have

aTM−1a ≥ β0ρ
2−n‖a‖2 (34)

for a positive constant β0, where a = [a1, · · · , an] with each aα ∈ RN̂P . Let b =
(b1, · · · , bMP ) ∈ RMP be an arbitrary vector such that

Q =
MP∑
j=1

bj ψj(x) ∈ Mh. (35)

Then, the inf-sup condition, the hypothesis (21) and the admissibility of shape
functions for pressure imply

‖Bb‖ = sup
a

aTBb

‖a‖ ≥ β
1
2
0 ρ

n
2 −1 sup

a

aTBb

(aTMa)
1
2

≥ β
1
2
0 ρ

n
2 −1λ‖Q‖ ≥ β1λρ

n−1‖b‖, (36)

for some λ > 0 and β1 > 0 independent of ρ, hence , from (34) and (36), there
exists some β2 > 0 independent of ρ such that

bTBTM−1Bb ≥ β2ρ
n‖b‖2

for any vector b satisfying (35). Therefore BTM−1B is invertible. Now if we let

p̄ =
(
BTM−1B

)−1
BTM−1f̄

and
ū = M−1(f̄ −Bp̄),
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then the pair (ū, p̄) satisfies our discrete Stokes equations (33).
For the uniqueness, we consider two discrete solutions (ū1, p̄1) and (ū2, p̄2). Then

the residual pair (v̄, q̄) = (ū1 − ū2, p̄1 − p̄2) satisfies

Mv̄ + Bq̄ = 0

BT v̄ = 0.

Multiplying q̄ on the second equation and v̄ on the first equation, we have

v̄TMv̄ + v̄TBq̄ = 0, q̄TBT v̄ = 0.

Since v̄TBq̄ and q̄TBT v̄ are scalars, we conclude that

v̄TBq̄ = q̄TBT v̄ = 0.

Thus we have
v̄TMv̄ = 0.

Since M is positive definite, we have v̄ = 0. From the inequality (36),

β1λρ
n−1‖q̄‖ ≤ ‖Bq̄‖ = ‖Mv̄‖ = 0 ,

which implies q̄ = 0. Therefore the uniqueness holds.

Let (u, p) be the solution of the Stokes equations (32), and (U, P ) be a discrete
solution of (33). Then we have error equations∫

Ω

(∇U−∇u) · ∇V dx +
∫
∂Ω

∂u
∂n

V dΓ

−
∫
Ω

(P − p)∇·V dx−
∫
∂Ω

pV · n dΓ = 0 , (37)∫
Ω

∇·UQdx = 0 , (38)

where V ∈ [V h
0 (Ω)]n, Q ∈ Mh(Ω).

Choosing the test function as U− R̂m
ρ,h u, we have∫

Ω

∇ (U− u) · ∇
(
U− R̂m

ρ,h u
)
dx +

∫
∂Ω

∂u
∂n

(
U− R̂m

ρ,h u
)
dΓ

−
∫
Ω

(P − p)∇·
(
U− R̂m

ρ,h u
)
dx−

∫
∂Ω

p
(
U− R̂m

ρ,h u
)
· n dΓ = 0.

Adding and subtracting ∇u to ∇(U− R̂m
ρ,h u), we have∫

Ω

|∇U−∇u|2 dx = −
∫
Ω

∇ (U− u) · ∇
(
u− R̂m

ρ,h u
)
dx

+
∫
Ω

(P − p)∇·U dx−
∫
Ω

(P − p)∇·R̂m
ρ,h u dx

−
∫
∂Ω

∂u
∂n

(
U− R̂m

ρ,h u
)
dΓ +

∫
∂Ω

p
(
U− R̂m

ρ,h u
)
· n dΓ

≡ I + II + III + IV + V.

From the Hölder inequality, we have

|I| ≤ ‖∇ (U− u) ‖L2‖∇
(
u− R̂m

ρ,h u
)
‖L2 . (39)
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Using the divergence free condition (38) of U in the discrete sense and ∇·u = 0 in
the continuous sense, we obtain

II =
∫
Ω

[(
P − Sm

ρ,h p
)
+
(Sm

ρ,h p− p
)]∇·U dx

=
∫
Ω

(Sm
ρ,h p− p

)∇·U dx

=
∫
Ω

(Sm
ρ,h p− p

)∇·(U− u) dx .

Again using the Hölder inequality,

|II| ≤ ‖∇(U− u)‖L2‖Sm
ρ,h p− p‖L2 . (40)

Now using ∇·u = 0 in (32), we have

|III| ≤ (‖P − Sm
ρ,h p‖L2 + ‖p− Sm

ρ,h p‖L2

) ‖∇(
u− R̂m

ρ,h u
)
‖L2 . (41)

From the error equation (37) and the inf-sup condition, we can estimate the pressure
term in (41) as∫

Ω
∇(U− u)∇ζ dx +

∫
Ω
(p− Sm

ρ,h p)∇·ζ dx− ∫
∂Ω

∂u
∂nζ dΓ +

∫
∂Ω

p ζ · n dΓ
‖∇ζ‖L2

=

∫
Ω
(P − Sm

ρ,h p)∇·ζ dx
‖∇ζ‖L2

≥ λ‖P − Sm
ρ,h p‖L2

for some ζ =
∑N̂P

i=1 ci φ̂i. Now note that∣∣∣∣∫
∂Ω

∂u
∂n

ζ dΓ
∣∣∣∣ ≤ ∑

i

|ci|
∣∣∣∣∫

∂Ω

∂u
∂n

φ̂i dΓ
∣∣∣∣

≤ C‖c‖l2ρ2m‖u‖H2

≤ Cρ2m−n
2+1‖∇ζ‖L2‖u‖H2 , (42)

from the assumption of proper window function and the coercivity assumption (21).
Likewise, we have ∣∣∣∣∫

∂Ω

p ζ · n dΓ
∣∣∣∣ ≤ Cρ2m−n

2+1‖∇ζ‖L2‖p‖H1 , (43)

Therefore we have the following pressure estimate

‖P − Sm
ρ,h p‖L2 ≤ 1

λ

{‖∇(U− u)‖L2 + ‖p− Sm
ρ,h p‖L2 + Cρ2m−n

2+1 (‖u‖H2 + ‖p‖H1)
}
.

(44)

From the above inequality (44) with (41), we obtain

|III| ≤ C
{
‖∇(U− u)‖L2 + ‖p− Sm

ρ,h p‖L2

+ ρ2m−n
2+1 (‖u‖H2 + ‖p‖H1)

}
‖∇

(
u− R̂m

ρ,h u
)
‖L2 . (45)
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Now for the estimate of IV , suppose
(
U− R̂m

ρ,h u
)

=
∑

i αiφ̂i, α = (α1, · · · , αNP ).
Then we have,

|IV | =
∣∣∣∣∫

∂Ω

∂u
∂n

(
U− R̂m

ρ,h u
)
dΓ

∣∣∣∣
≤
∑
i

|αi|
∣∣∣∣∫

∂Ω

∂u
∂n

φ̂i dΓ
∣∣∣∣

≤ ‖α‖l2ρ2m‖u‖H2

≤ Cρ2m−n
2+1‖∇

(
U− R̂m

ρ,h u
)
‖L2‖u‖H2

≤ Cρ2m−n
2+1

{
‖∇ (U− u) ‖L2 + ‖∇

(
u− R̂m

ρ,h u
)
‖L2

}
‖u‖H2 , (46)

from the assumption of proper window function, the coercivity assumption (21).
Likewise, we have

|V | ≤ Cρ2m−n
2+1

{
‖∇ (U− u) ‖L2 + ‖∇

(
u− R̂m

ρ,h u
)
‖L2

}
‖p‖H1 . (47)

Applying interpolation theorem (9) to the pressure term ‖p − Sm
ρ,h p‖L2 and

applying (15) to ‖∇
(
u− R̂m

ρ,h u
)
‖L2 , and combining all the above estimates (39),

(40), (45), (46) and (47) we obtain the following H1 estimate:

‖∇ (U− u) ‖L2 ≤ C ρm (‖u‖Hm+1 + ‖p‖Hm) .

Now from the coercivity (8), (21) and interpolation theorem (15),

‖U− u‖L2 ≤ Cρ‖∇ (U− u) ‖L2 + Cρm+1‖u‖Hm+1 .

Also from the pressure estimate (44) and the interpolation inequality for the pres-
sure we get

‖P − p‖L2 ≤ Cρm (‖u‖Hm+1 + ‖p‖Hm) .

Therefore we proved the following Theorem.

Theorem 3.3. Suppose that (u, p) ∈ Hm+1
0 (Ω) ×Hm(Ω)/R is the solution of the

Stokes problem (32) and (U, P ) ∈ (
Cm+1
0 (Ω) × Cm(Ω)

) ∩ ([
V h
0 (Ω)

]n ×Mh(Ω)
)
is

the solution of the discrete Stokes problem (33). If m > n
2 − 1, then the following

error estimate holds

‖U− u‖L2(Ω) + ρ‖∇ (U− u) ‖L2(Ω) + ρ‖P − p‖L2(Ω) (48)

≤ C ρm+1
(‖u‖Hm+1(Ω) + ‖p‖Hm(Ω)

)
.

Remark 4. When we apply the meshfree method which use the Galerkin formu-
lation to the Dirichlet problem, terms involving boundary integral are not exactly
zero. But as we have seen in the proof of the above theorem, those terms involving
boundary integral can be controlled by choosing the window function and dilation
parameter. Indeed, estimates for terms involving boundary integrals are somehow
trivial, but we include for the completeness.
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3.2. Navier-Stokes Problem.
In this subsection we study the stationary incompressible Navier-Stokes equa-

tions with zero boundary condition for the space dimension n = 2 and 3. Let
(u, p) ∈ H1

0 (Ω) × L2(Ω)/R be the solution of the Navier-Stokes equations

−ν∆u+ (u · ∇)u+∇p = f

∇·u = 0 in Ω , (49)
u = 0 on ∂Ω .

The necessary regularity of f will be assumed. We will assume the same hypotheses
for the velocity and the pressure nodes as in previous section, also we follow all
notations and assumptions.

The discrete solution (U, P ) ∈ [V h
0 (Ω)]n ×Mh satisfies

ν

∫
Ω

∇U∇V dx+
∫
Ω

(U · ∇U)V dx−
∫
Ω

P · ∇·V dx =
∫
Ω

f V dx (50)∫
Ω

∇·UQdx = 0 ,

for all V ∈ [V h
0 (Ω)]n, Q ∈ Mh.

For the existence of discrete solution we prepare the following. Indeed, with the
admissibility condition of shape functions and Sobolev type inequality (2.2), we
have an L2 inverse type inequality which provides a fixed point theorem.

Lemma 3.1. Assume the space dimension n = 2 or 3. Suppose F (x) ∈ V h
0 (Ω), then

||F ||L∞ ≤ c(ε)

ρ
1+ε
2

||∇F ||L2

for given ε > 0 and for some constant c(ε) depending on ε.

Proof. Note that F (x) is represented by

F (x) =
NP∑
i=1

fiφi, for all φi ∈ AV

For fixed ε, from the Sobolev type inequality (19) and finite overlapping property
of shape function, we have

‖F‖L∞ ≤ C(ε)
[∫
Ω

|∇F |3+εdx
] 1

3+ε

= C(ε)

∫
Ω

|
∑

xi∈Λ(x)
fi∇φi(x)|3+εdx

 1
3+ε

≤ C(ε)L

[
NP∑
i=1

|fi|3+ε
∫
Ω

|∇φi(x)|3+εdx
] 1

3+ε

≤ C(ε)L

[
NP∑
i=1

|fi|3+ε ρn

ρ3+ε

] 1
3+ε

≤ C(ε)L
[‖F‖L∞

ρ

] 1+ε
3+ε

[∑
i

|fi|2 ρ
n

ρ2

] 1
3+ε

≤ C(ε)L
[‖F‖L∞

ρ

] 1+ε
3+ε

‖∇F‖
2

3+ε

L2 ,

where Λ(x) = {xi ∈ Λ|x ∈ supp (φi(x)) ∩ Ω̄}. Hence this implies

‖F‖L∞ ≤ C(ε)ρ−
1+ε
2 ‖∇F‖L2 .
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Theorem 3.4. For the space dimension n = 2 or 3, let w ∈ H1
0 (Ω) be divergence

free in the discrete sense, i.e.,∫
Ω

∇·wψj dx = 0, j = 1, · · · ,MP

and F ∈ V h
0 (Ω) be a given function. Then we have∣∣∣∣∫

Ω

|F|2∇·w dx

∣∣∣∣ ≤ C ρ
1−ε
2 ‖∇w‖L2‖∇F‖2L2 (51)

for any ε ∈ (0, 1), where ρ > 0 is the dilation parameter of the shape function.

Proof. We let F (x) =
∑N̂P

i=1 fiφ̂i(x). Assume Sm
ρ,h is the discrete projection in terms

of the shape functions ψj ’s. Since ∇·w = 0 in the discrete sense,∫
Ω

∇·w Sm
ρ,h(|F|2) dx = 0

and thus we can write∫
Ω

∇·w |F|2 dx =
∫
Ω

∇·w (|F|2 − Sm
ρ,h(|F|2)

)
dx.

Using Hölder inequality and interpolation inequality (9), we obtain∣∣∣∣∫
Ω

∇·w [|F|2 − Sm
ρ,h(|F|2)

]
dx

∣∣∣∣ ≤ ‖∇·w‖L2‖|F|2 − Sm
ρ,h(|F|2)‖L2

≤ Cρ‖∇·w‖L2‖∇(|F|2)‖L2

≤ Cρ‖∇·w‖L2‖F‖L∞‖∇|F|‖L2 .

Now from the previous lemma, we have

‖F‖L∞ ≤ c(ε)

ρ
1+ε
2

||∇F||L2

and hence we have ∣∣∣∣∫
Ω

|F|2∇·w dx

∣∣∣∣ ≤ C ρ
1−ε
2 ‖∇w‖L2‖∇F‖2L2

Theorem 3.5. There exists ρ0 > 0 depending on ‖f‖H−1 and ν such that if 0 < ρ <
ρ0, then there is a discrete solution (U, P ) to the discrete Navier-Stokes equations
(50) for space dimension n = 2, 3.

Proof. We only prove the three dimensional case. Indeed the two dimensional case
is easier and we omit the proof. Let us introduce a solution map whose fixed point is
a solution to the discrete Navier-Stokes equations. We define the finite dimensional
function space

W = {w =
N̂P∑
i=1

ci φ̂i | ci ∈ R3, φ̂i ∈ ÂV ,

∫
Ω

ψi∇·w dx = 0 ∀ ψi ∈ AP }.
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Let W ∈ W be fixed. We define a map L : W → W such that U = L(W)
satisfying

ν

∫
Ω

∇U∇V dx+
∫
Ω

(W · ∇U)V dx−
∫
Ω

P ∇·V dx =
∫
Ω

f V dx∫
Ω

Q∇·U dx = 0

for all V ∈ [V h
0 (Ω)]3, Q ∈ Mh(Ω). Define a subset W(γ) ⊂ W for each γ > 0 by

W(γ) = {w ∈ W | ‖∇w‖L2 ≤ γ}.
First we claim the following. For given ν > 0 and γ > 0, there is ρ0 > 0 so that

if ρ < ρ0 then for each w ∈ W(γ) the matrix M(w) is invertible. Here the matrix
M(w), that is associated with the map L, is defined by

Mi j(w) = ν

∫
Ω

∇φ̂i∇φ̂j dx +
∫
Ω

(w · ∇φ̂i) φ̂j dx .

Indeed, for any given U = [U1, · · · , Un] where Uα =
∑N̂P

i=1 c
α
i φ̂i and α = 1, 2, 3, we

get

cαTM(w)cα =
N̂P∑
i=1

N̂P∑
j=1

cαi cαj Mi j

= ν

∫
Ω

|∇Uα|2 dx− 1
2

∫
Ω

|Uα|2∇·w dx.

Since ∇·w = 0 in the discrete sense, from the estimate (51), the following is obtained∣∣∣∣∫
Ω

∇·w |Uα|2 dx
∣∣∣∣ ≤ C ρ

1−ε
2 ‖∇w‖L2‖∇Uα‖2L2 . (52)

Hence, if ρ is chosen so small that

C ρ
1−ε
2 ‖∇w‖L2 ≤ Cρ

1−ε
2 γ ≤ ν, (53)

then we have

cαTM(w)cα ≥ ν

2

∫
Ω

|∇Uα|2 dx ≥ C νρn−2|cα|2.

Since cα is chosen arbitrarily, M(w) is invertible. If we define the assembled matri-
ces M(w) and B as in the case of the Stokes equations (see the proof of Theorem
3.2 for the definition of B), we obtain[

M(w) B
BT 0

] [
ū
p̄

]
=
[
f̄
0

]
.

Since M(w) is invertible, the above matrix equation has a unique solution as long
as B satisfies the inf-sup condition (23).

Now we have to prove U ∈ W(γ) for sufficiently small γ > 0. From the energy
estimates, if C ρ

1−ε
2 γ ≤ ν

2
, we obtain∫
Ω

|∇U|2 dx ≤ 2
ν
‖f‖H−1‖∇U‖L2 . (54)

Thus the following is derived

‖∇U‖L2 ≤ 2
ν
‖f‖H−1 .



518 CHOE, KIM, KIM AND KIM

The inequality (54) is derived from the estimates (52) and the following identities

ν

∫
Ω

|∇U|2 dx =
∫
Ω

f U dx−
∫
Ω

(w · ∇U) ·U dx

=
∫
Ω

f U dx +
1
2

∫
Ω

∇·w |U|2, dx.

Therefore, if we choose γ =
2
ν
‖f‖H−1 and ρ0 ≤

[
ν2

4C‖f‖H−1

] 2
1−ε

, then the map

L : W(γ) → W(γ) is an into map. To complete our proof, we have to show that
the map L is continuous. Let W1 and W2 be arbitrary two functions in W(γ) and
U1 = L(W1) and U2 = L(W2). If we let W̄ = W2−W1 and Ū = U2−U1, then
we have

−ν∆Ū+ W̄ · ∇U2 +W1 · ∇Ū+∇(P2 − P1) = 0 .

Taking Ū as a test function and using (52), the following estimate is obtained

ν‖∇Ū‖2L2 = −
∫
Ω

(W̄ · ∇U2) · Ū dx +
1
2

∫
Ω

∇·W1 |Ū|2 dx

≤ ‖W̄‖L3‖Ū‖L6‖∇U2‖L2 +
1
2
C ρ

1−ε
2 γ‖∇Ū‖2L2 .

If 0 < ρ < ρ0, from the Sobolev embedding theorem, we obtain
ν

2
‖∇Ū‖2L2 ≤ C|Ω| 16 ‖W̄‖L6‖∇U2‖L2‖Ū‖L6

≤ C|Ω| 16 γ ‖∇W̄‖L2‖∇Ū‖L2 .

Consequently, we have shown the continuity of the map L by

‖∇(L(W2) − L(W1))‖L2 ≤ C|Ω| 16 γ
ν
‖∇(W2 −W1)‖L2 .

Now by the Leray-Schauder fixed point theorem, we prove our existence theorem
for the incompressible Navier-Stokes equations.

Remark 5. Although we could show the existence of discrete solutions to the dis-
crete Navier-Stokes equations without any restrictions on the size of the external
force f as long as ρ is small, to prove uniqueness, we need an intrinsic smallness
condition for the size of H−1 norm of the external force f for the three dimension.

Now let us consider the uniqueness of solution for the discrete Navier-Stokes
equations in the case n = 3. Suppose U1 and U2 be two solutions of the discrete

Navier-Stokes equations. If we assume that
2‖f‖H−1

ν2
is sufficiently small, then,

from the energy estimate, we have

ν‖∇(U1 −U2)‖2L2 ≤ C
(
1 + ρ

1−ε
2

) 2‖f‖H−1

ν
‖∇(U1 −U2)‖2L2 .

The above inequality implies that the solution is unique if

C(1 + ρ
1−ε
2 )

2‖f‖H−1

ν2
≤ 1.

Let (U, P ) is a solution of the discrete Navier-Stokes equations (50), and (u, p)
is a solution of the Navier-Stokes equations (49). Then we have the following error
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equations

ν

∫
Ω

∇(U− u)∇V dx + ν

∫
∂Ω

∂u
∂n

V dΓ +
∫
Ω

(U− u) · ∇UV dx

+
∫
Ω

u · ∇(U− u)V dx−
∫
Ω

(P − p)∇·V −
∫
∂Ω

pV · n dΓ = 0 (55)∫
Ω

∇·(U− u)Qdx = 0,

for all V ∈ [V h
0 (Ω)]n and Q ∈ Mh(Ω). Taking U− R̂m

ρ,h u as a test function to the
discrete error equation (55), we have the equality

ν

∫
Ω

|∇(U− u)|2 dx = −ν

∫
Ω

∇(U− u)∇(u− R̂m
ρ,h u) dx

−
∫
Ω

(U− u) · ∇U · (U− R̂m
ρ,h u) dx−

∫
Ω

u · ∇(U− u) · (U− R̂m
ρ,h u) dx

+
∫
Ω

(P − p)∇·(U− R̂m
ρ,h u) dx− ν

∫
∂Ω

∂u
∂n

(
U− R̂m

ρ,h u
)
dΓ

+
∫
∂Ω

p
(
U− R̂m

ρ,h u
)
· n dΓ

≡ I + II + III + IV + V + V I.

The first term I is estimated as follows

|I| ≤ ν‖∇(U− u)‖L2‖∇(u− R̂m
ρ,h u)‖L2 .

Also we can obtain the following estimates for II, III and V ,

|II| ≤ ‖U− u‖L3‖∇U‖L2‖U− R̂m
ρ,h u‖L6

≤ C‖∇(U− u)‖L2‖∇U‖L2

(
‖∇(U− u)‖L2 + ‖∇(u− R̂m

ρ,h u)‖L2

)
,

|III| ≤ ‖u‖L3‖∇(U− u)‖L2‖U− R̂m
ρ,h u‖L6

≤ C‖∇u‖L2‖∇(U− u)‖L2

(
‖∇(U− u)‖L2 + ‖∇(u− R̂m

ρ,h u)‖L2

)
,

|V | ≤ Cρ2m−n
2+1

{
‖∇ (U− u) ‖L2 + ‖∇

(
u− R̂m

ρ,h u
)
‖L2

}
‖u‖H2

|V I| ≤ Cρ2m−n
2+1

{
‖∇ (U− u) ‖L2 + ‖∇

(
u− R̂m

ρ,h u
)
‖L2

}
‖p‖H1 .

Terms V and V I can be estimated as in the case of the Stokes equations, we refer
(46) and (47).

For the pressure term IV , we apply the same procedure as in the Stokes problem,
i.e., use the inf-sup condition which is the hypothesis for the shape functions φ̂’s
and ψ’s. At first, we can obtain the followings

IV =
∫
Ω

(P − p)∇·(U− u) dx +
∫
Ω

(P − p)∇·(u− R̂m
ρ,h u) dx

=
∫
Ω

(Sm
ρ,h p− p)∇·(U− u) dx +

∫
Ω

(P − p)∇·(u− R̂m
ρ,h u) dx (56)

≤ ‖p− Sm
ρ,h p‖L2‖∇(U− u)‖L2

+
(
‖P − Sm

ρ,h p‖L2 + ‖p− Sm
ρ,h p‖L2

)
‖u− R̂m

ρ,h u‖L2 .
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We want to find the estimate of ‖P−Sm
ρ,h p‖L2 . As in the case of the Stokes problem,

the inf-sup condition implies that

λ‖Sm
ρ,h p− P‖L2 ≤

∫
Ω
(Sm

ρ,h p− P )∇·ζ dx
‖∇ζ‖L2

=
1

‖∇ζ‖L2

[
ν

∫
Ω

∇(U− u)∇ζ dx +
∫
Ω

(U− u) · ∇U · ζ dx +
∫
Ω

u · ∇(U− u) · ζ dx

+
∫
Ω

(Sm
ρ,h p− p)∇·ζ dx−

∫
∂Ω

∂u
∂n

ζ dΓ +
∫
∂Ω

p ζ · n dΓ
]
,

for some ζ =
∑N̂P

i=1 ci φ̂i. Thus we have

‖P − Sm
ρ,h p‖L2 ≤ν + C‖∇U‖L2 + C‖∇u‖L2

λ
‖∇(U− u)‖L2 +

1
λ
‖p− Sm

ρ,h p‖L2

+
C

λ
ρ2m−n

2+1 (‖u‖H2 + ‖p‖H1) . (57)

Thus from the estimates (56) and (57), we obtain

|IV | ≤
(
‖p− Sm

ρ,h p‖L2 +
ν + C‖∇U‖L2 + C‖∇u‖L2

λ
‖u− R̂m

ρ,h u‖L2

)
‖∇(U− u)‖L2

+
(
1 +

1
λ

)
‖p− Sm

ρ,h p‖L2‖u− R̂m
ρ,h u‖L2

+ Cρ2m−n
2+1 (‖u‖H2 + ‖p‖H1) ‖∇

(
u− R̂m

ρ,h u
)
‖L2 .

Note that the followings are true

‖∇U‖L2 ≤ 2
ν
‖f‖H−1 , ‖∇u‖L2 ≤ 2

ν
‖f‖H−1 .

Combining the estimates of I, II, III and IV all together, we finally obtain the
following L2-error estimates for ∇(U− u) such that

‖∇ (U− u) ‖L2(Ω) ≤ C0 ρ
m (‖u‖Hm+1 + ‖p‖Hm) .

Then, considering interpolation theorems Theorem 2.1, Corollary 2.1 and L2 esti-
mate for ∇(U − u), we obtain the L2 estimates for u and p. Details of the proof
is exactly same as the case of the Stokes equations. Hence we state the stability
theorem of the MLSRK scheme for the Navier-Stokes equations.

Theorem 3.6. Assume (u, p) ∈ Hm+1
0 (Ω) ×Hm(Ω) is the solution of the Navier-

Stokes equations (49) and (U, P ) ∈ (
Cm+1
0 (Ω) × Cm(Ω)

)∩([V h
0 (Ω)

]n ×Mh(Ω)
)
is

the solution of the discrete Navier-Stokes equations (50). For the space dimension
n = 2 or 3, if we assume that

C‖f‖H−1

ν2
< 1,

then the following error estimate is obtained

‖U− u‖L2(Ω) + ρ‖∇ (U− u) ‖L2(Ω) + ρ‖P − p‖L2(Ω)

≤ C0 ρ
m+1 (‖u‖Hm+1 + ‖p‖Hm) ,

where C0 depends only on ν.

It is interesting that the smallness of H−1 norm of f is necessary for the error
estimates.
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4. Numerical Examples.
Using the MLSRK method discussed in the previous sections, the numerical

experiments are performed for the Stokes and the Navier-Stokes equations in two
dimensional case. The results show good agreement with stability theorems that
we proved.

The domain considered in our examples is the unit square Ω = [0, 1]×[0, 1] ⊂ R2.
The zero boundary conditions for the velocity are imposed on the boundary of Ω.
Node distributions for the velocity approximation and the pressure approximation
are shown in Fig. 1. About the window function, we use the function defined by

Φ(x, y) = S(x)S(y), (58)

where S(t) is the cubic spline function defined below :

S(t) =


2
3 − 4|t|2(1 − |t|) for |t| ≤ 1

2
4
3 (1 − |t|)3 for 1

2 < |t| < 1
0 for |t| ≥ 1.

The shape functions of the velocity and the pressure associated with the window
function Φ(x, y) are drawn in Fig. 2. It turns out that such a distribution of velocity
and pressure nodes satisfies the inf-sup condition of the definition 3.

Pressure Node

Support of ϕ i

ψ
j

Support of 

Velocity Node

Figure 1. Distribution of the velocity and the pressure nodes

In calculating the numerical solution of the Stokes equations, we assume ν = 1
without loss of generality. In the case of Navier-Stokes equations, we introduce the
Reynolds number denoted by Re. Our numerical experiments for the Navier-Stokes
problem are performed when Re = 100.

To compare the error between the exact solution (u, p) and the numerical solution
(U, P ), we choose the divergence free velocity u = (u, v) and the pressure p in
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Figure 2. Velocity Shape Function(left) and Pressure Shape Function(right)

advance such as

u = π sin3 πx sin2 πy cosπy,

v = −π sin2 πx sin3 πy cosπx,

p = x2 − y2 .

Then its corresponding force f can be exactly calculated for each case of the Stokes
and the Navier-Stokes equations. Under this situation, we made the numerical
solutions U and P of the Stokes flow and the Navier-Stokes flow problems using
MLSRK scheme.

Fig. 3 shows the logarithmic scale plots of decay rates of relative errors for the
Stokes problem and the navier-Stokes problem. As a reference, relative L2−, H1

errors for U = (U, V ) and relative L2− error for P are tabulated in Table 1, Table
2 and Table 3 respectively, where the letter m denotes the order of consistency.

Nodes Stokes Navier-Stokes(Re = 100)
Vel. × Pres. m=1 m=2 m=1 m=2
441 × 121 1.49440945e-02 1.26810795e-03 1.48085601e-02 1.26768178e-03
1681 × 441 3.74951155e-03 1.49084512e-04 3.73612781e-03 1.49022236e-04
3721 × 961 1.66755670e-03 4.91346047e-05 1.66174975e-03 4.90983793e-05
6561 × 1681 9.38218487e-04 2.38447287e-05 9.34962190e-04 2.38231316e-05

Table 1. Relative L2− errors of U− u

Nodes Stokes Navier-Stokes(Re = 100)
Vel. × Pres. m=1 m=2 m=1 m=2
441 × 121 1.23078917e-01 2.06432348e-02 1.23092386e-01 2.06434938e-02
1681 × 441 6.16188431e-02 5.13782186e-03 6.16200359e-02 5.13783366e-03
3721 × 961 4.10890061e-02 2.28167390e-03 4.10893707e-02 2.28167686e-03
6561 × 1681 3.08193201e-02 1.28287371e-03 3.08194759e-02 1.28287502e-03

Table 2. Relative H1− errors of U− u

Though we discussed the problems only with the zero velocity condition on
the boundary of Ω in this paper, the generalization for the problem of non-zero
boundary condition is readily obtained. As an example of the problem of non-zero
boundary condition, the driven cavity flow is calculated numerically. We assume
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Figure 3. Decay rates of relative errors

the domain of flow is the same Ω as previous example and the upper wall(0 ≤
x ≤ 1, y = 1) moves to right with unit speed while the other walls remain fixed.
To impose boundary condition, we made boundary transformation for the shape
function in the numerical code as we did for the previous example. In numerical
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Nodes Stokes Navier-Stokes(Re = 100)
Vel. × Pres. m=1 m=2 m=1 m=2
441 × 121 6.58106632e-03 3.63083620e-03 3.43864089e-03 1.04801197e-04
1681 × 441 1.68942766e-03 5.94784716e-04 8.66369582e-04 1.52837464e-05
3721 × 961 7.53849631e-04 2.14239418e-04 3.85350328e-04 5.79634323e-06
6561 × 1681 4.24609588e-04 1.04359181e-04 2.16815953e-04 3.04217952e-06

Table 3. Relative L2− errors of P − p

experiment, we put the Reynolds number Re = 1, Re = 100 for the Stokes problem
and the Navier-Stokes problem. The stream lines and the pressure are shown in
Fig. 4, respectively. Here the number of velocity nodes is 6561 and that of pressure
nodes is 1681.

In Fig. 4, the symmetry of our numerical solution is well presented, which is
intrinsic property of the Stokes flow in a symmetric domain. The skewness of the
solution for the Navier-Stokes flow is also well illustrated.

5. Conclusions. The meshless method for the Stokes and the Navier-Stokes prob-
lems are analyzed rigorously and we have performed several numerical experiments
successfully. The numerical results show a good agreement with the theoretic anal-
ysis for the convergence of the discrete solution. The MLSRK method seems rec-
ommendable for the incompressible Navier-Stokes flow and the Stokes flow. In the
MLSRK method for the incompressible viscous flow problems, only if we distribute
the nodes in the computational domain, we can calculate the numerical solution as
smooth as we want. Furthermore, this method has the advantage of mesh adapta-
tion without doubt. Therefore, we may conclude that the MLSRK must be one of
the promising methods recently discovered and much more intense researches are
required for the more general applications to various directions.
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(a) Stream lines : Stokes(Re = 1)
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(c) Pressure : Stokes(Re = 1)
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(e) Vorticity : Stokes(Re = 1)
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(f) Vorticity : Navier-Stokes(Re =

100)

Figure 4. Stokes(a,c,e) and Navier-Stokes(b,d,f) driven cavity flows


