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Abstract

We construct finite element spaces for the Stokes equations on curved domains,
which satisfy the Brezzi-Babuska condition. Moreover, we estimate the errors of the
finite element approximations for the Stokes equations.
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1. Introduction and statement of the result

Many numerical analysts have studied finite element approximations for the
Stokes equations and their errors. For error estimates, it is assumed that
the solution of Stokes equations are sufficiently regular, see [7]. However, if the
domain of Stokes flow is not smooth enough, in other words, if the boundary
of the domain has a geometric singularity, then the regularity of the solutions is
not known yet in general. A polygonal domain is a typical example of a sin-
gular domain. Only on a few cases of polygonal domains the regularity is
known. For example, Kellog and Osborn [8] have shown that on a con-
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vex polygon in R? the solution of the Stokes equations is regular. Since the
regularity of solutions of the Stokes equations is not known (even though many
people want to believe the regularity) on general polygonal domains, many
numerical analysts assume that the solutions are regular on polygonal do-
mains. However, in this paper we do not assume artificially the regularity.
Instead we use the well-known regularity of solutions on smooth domains. We
approximate the smooth domain with polygons, and then estimate the errors of
finite element approximations on the polygons.

Historically, there are many papers which was dealt with finite element
approximations on curved domains. Schatz and Wahlbin [10] showed that the
H| projection into finite element spaces based on quasi-uniform triangulations
of a bounded smooth domain in R” is stable in the maximum norm. Ciarlet and
Raviart [5], Lenoir [9] considered interpolations and finite elements, and Ber-
nardi [2] constructed L’-interpolations into finite element spaces on curved
domains, and estimated the errors. Schatz et al. [11] considered finite element
approximations on convex domains for the heat equations.

We consider a smooth domain, and approximate the domain by polygonal
subdomains. On the subdomains we construct finite element spaces and we
approximate the solution. Then, we show that the errors of the approximations
in H'-norm for the velocity and in L?>-norm for the pressure of the Stokes
equations are O(h), and that the L*-error of the velocity is O(h*), where 4 is a
discretization parameter tending to zero.

Let Q be a bounded domain in R* of which boundary dQ is in %4>. We
consider the stationary Stokes equations: for f given in L?(2)*, find (u,p) in
HL(2)* x LX(Q) such that

—Au+Vp=1f in Q,
divu=0 in Q, (L.1)
u(x) =0 for x € 0Q,

where L2(Q) is the subspace of L?(Q) with [,gdx =0 for all ¢ € L2(Q). We
denote by (-,-) the inner product in L*(Q) or in L*(Q)°, by || - || the corre-
sponding norm obtained by the inner product (-, -). For short, set X défHOI(Q)2
and Q¥ 12(Q).

Let 4 denote a discretization parameter tending to zero. For each 4, let X;,
and Q) be finite dimensional spaces such that

X, CX =H\(Q)?, 0,cO=IL}Q).

We consider the discretized problem: find (uy, p,) in X, x O, such that

(1.2)

<Vuh,Vvh> — (ph,diVVh> = <f, Vh> for all v, € X,
(qn, divu,) =0 for all g, € Oy.
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For the existence and the uniqueness of solution (uy,p,) of (1.2), a sufficient
condition is known, which is called the discrete inf-sup, or the Brezzi-Ba-
buska(LBB) condition:

there exists a constant § > 0 independent of 4 such that

V,
sup < h7qh>
vex, |[Vallx,

> Bligall for all g, € Oy (1.3)

It is also known that the necessary and sufficient condition of the LBB con-
dition is that

there exists a linear operator I, € £ (X;X,) satisfying:
(div(v — I,v),q,) =0 for all g, € O, vE X,
[T¥]ly, < Cllv[ly for all v € X, (1.4)

with a constant C > 0 independent of 4.

In the case of a polygonal domain Q = Q,, the finite element spaces satis-
fying the Brezzi-Babuska condition, are constructed by many authors, see [6]
for the reference.

In this paper we construct some finite element spaces on curved domains
satisfying the Brezzi-Babuska condition, and we estimate the errors of finite
element approximations for the Stokes equations. In Section 2 we review finite
elements. Since functions in H; (£2) may not be continuous, direct construction
of finite element spaces satisfying the inf-sup condition is not easy. So we
consider continuous L*-interpolations in Section 3. Based on the interpolations
we construct finite element spaces satisfying the inf-sup condition in Section 4.
In Section 5, we estimate the errors of finite element approximations for the
Stokes equations.

2. Review of finite element spaces

In this section we review Lagrange finite elements. Before going further, for
our usage we recall the regularity result of Stokes equations given in Propo-
sition 2.3 [12]:

Proposition 2.1. Let Q be an open bounded set of class €",r = max{m + 2,2}, m
integer = —1. If f € W™S(Q) with 1 <s < oo, then there exist a unique solution
(u, p) of (1.1) (p is unique up to a constant):

uc Wm+2‘S(Q)2, p c Wm_H’S(Q),

and there exists a constant co(s,m, Q) such that
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[allymizs o) + 1Pl s ym < Collf|lms o)-

Remark. If m is sufficiently large, for example s;s > 2 and m + 2 = s; + s, then
the solution u € *2(Q) by Sobolev embedding Theorem, see [1].

For K C Q, integer i >0, W"(K) and |- ||,,x denote the usual Sobolev
space and its norm on K, respectively. For K C Q, integer i > 0, let || .k be the
L*(K)-norm of ith order derivatives of v on K, which is the semi-norm of
H'(K)>. For s =2, set |[V],x & [Iv]|;» 4> and H'(K) = W2(K) for K C R*. For
s=2and i =0, we set |[v|[x = [[v||ox for K C R*. If ¥/ is a function space, we
also denote by ||v||,, the norm of v € V. For the definitions of Sobolev spaces,
refer to Adams [1].

We now review Lagrange finite elements. We assume that Q is open
bounded domain in R? of which boundary 0Q is Lipschitz or smooth. For our
error estimate we will assume later that Q is of class *. For each & > 0, we
introduce a triangulation 7, of Q, i.e., a finite set of 2-simplices K C Q, where
h denotes the maximal diameter of K in 7 ,; set

Q% Uker, K.
In the triangulation .7, any intersection of two 2-simplices is empty or a vertex,
or a I-face. It is clear that Q, # Q in general, that is, 7, is not exact. We notice
that in general, when Q, is a polygonal domain, Q, ¢ Q, unless (i) Q is a
polygon, or (ii) € is convex smooth curve and the partitions of €, are straight
edged, or (iii) 0 is a polynomial curve and isoparametric finite elements are
used at the boundary. Here, our polygon , is contained in Q.
For each x € 0Q,, we define 6(£2,x), and then 6(2, 2,) by

5(Q,x) L dist(x,0Q), and (2, Q)% sup 5(Q,x). (2.1)

X€0Qy

The boundary 092, of 2, consists of vertices and 1-faces. We assume that
Q, C Q,Qisin 6 and §(Q, Q,) < CH2.

For each K € .7, there is an affine mapping Fx : R* — R? which maps a 2-
simplex K onto K and which is of the form

FK()A() = BK)A( + bK,

where By is a linear mapping from R? to itself and bx € R*. The 2-simplex K is
called a reference 2-simplex. For each % and for each K = Fx(K) in 7, we
denote by hg the diameter of K and by py the maximal diameter of circles

inscribed in K. We notice that

1Bl < /by 1Bl < A/ px
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where &y is the diameter of K, and p the maximal diameter of circles inscribed

in K. The family {7}, of triangulations is said to be regular if there exist a
constant ¢ independent of % such that

h/pg <c
for any element K in 7. In [6], the following is shown:
Lemma 2.2. For each m = 0 and for all real s with 1<s< oo, the mapping

vV = vo Fy is an isomorphism from W™ (K)* onto W™*(K)* and the following
bounds hold:

C| det B|""(|Bg' "V, 1 for all ¥ € W™ (K)?,
C| det Be|"*||Bg||" V], x for all v € W™ (K).

|v|m,s,K

<
V],sk <

For a given integer » — 1 > k > | and a 2-simplex K, denote by P;(K) the set
of all polynomials of degree <k, and set P(K) = P.(K)>. Notice that any
polynomial p € P, (K) is uniquely determined by its values on the set

3
1 k—1
= } =1 0,—,....—, 13, 1<j<35,
where a; are the vertices of K. For each K € 7, (K,P(K),Si(K)) is a Lag-
range finite element if we identify x; € S;(K) with J,,, where dy, is the Dirac
delta function at x;.

For a 2-simplex K with vertices a;,a, and a3, the barycentric coordinates
Ai(x),=1, 2, 3, of any point x € K, are the solutions of the linear system

3 3
Sagi=x, j=12, and > k=1,
—1 i=1

where a; = (a,l, »), and X = (x,x,). Let J; = J; 0 Fx be the barycentric coor-
dinates on K.

3. Continuous L>-interpolations

Since each function v in X to be interpolated may not be continuous, the
usual interpolation .#,v € P,(K) defined in each element K by:

Iwv(x) =v(x) for x € §;(K)

may not be defined. So we cannot define their interpolations directly by using
the linear forms that characterize the degrees of freedom of the finite elements.
To overcome this difficulty, we introduce an interpolation operator by using a
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local L%-projection as in [2]. Based on the interpolation we finally want to
define a projection I1,: X — X, which satisfies the inf-sup condition of the finite
element space.

First, we consider local L?-interpolations. Define finite dimensional subspace
Y, of H'(Q)* by

def

Y, S {p €6’ (Q) : plg € Pi(K) forall K € 7,}.

We take nodes x; € Q, such that
Uker, Sk(K) = {x; : 1 <i< N, },

all the nodes x; being distinct. For each integer i, 1 <i < N, there exists exactly
one function ¢; € Y, such that for j =1,...,N,,

pi(x;) =1 if i=},
e:(x;) =0 1if i # .

Then the set {¢;: | <i<N,} is a basis of ¥,. Then, for 1 <i<N,, we define a
macroelement 4; by

A; =U{K € T; supp (¢;) NK is nonempty} = U{K € 7, : x; €K}.

If the triangulation .7, is regular, then the number of triangles K in 4; is
bounded by a constant M independent of 4 and i. On the other hand, the
number of macroelements 4, containing a given K is bounded by a constant.
To each 4;, there exists a reference macroelement A; contained in the unit ball
of R? which is the union of K = F, ' (K),K C 4;. Furthermore, there exists a
continuous and invertible mapping £, from A onto 4; such that 7, |¢ 1s an
affine mapping from K onto K = FK( ) for each K C 4,. Some examples of 4,
and 4, are given in Fig. 1.

Now we define the interpolation operator @2 L}](Q) — Y by using local L*-

projections, where Lj(Q) is the subset of L' (Q)* with zero boundary data, and

VLY, N HN (@)

Fai (0,0) Fai

(0,0)

(@) (b)

Fig. 1. Examples of 4; and their references Z,-.
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is the subset of ¥, with zero boundary data. Let I', be the set of the 1-faces
f coQ, of K € 7. For each 1-face f € I', of K € 7, denote

Sh.r, = Urer, (S (K) N f).

We extract a maximal system of linearly independent functions from {¢;:
i=1,...,N,} corresponding to S r,, which is denoted by {¢,,..., @y }. Then
we complete the system in ¥, by renumbering to obtain the maximal system
{@1,..., @y, }. We have the finite element space Y with zero boundary con-
dition;

Y) = span{g, : Nj < i <N,}.

Now we are ready to define the interpolation opéerfator %’2
Let ve L(l)(Q) For i, 1 <i<N,, setting V;=voF,, there is a unique

o~

p; € fP(4;) such that

/A(v,-—p,.)pdf;:o for all p € Py(4,), (3.1)
where P;(4;) is the subset of %°(4;) of piecewise polynomials of degree < k.
Then, we define a local interpolation #,v by

Ni
AvE S ([)i o FA‘il) (X)) .. (3.2)
=1
The interpolation #,v belongs to Y. In the definition of the interpolation %,yv,
the boundary information of v is not counted on, in other words, #,v may not
belong to Y. To get an interpolation in ¥ for v € Ly(Q), we need to define
another interpolation, denoted by %"2 If the points x; of 4; is on 0Q;, then
discard such i from (3.2). That is, we discard the indices i = 1, ..., N,. Then we
define Z)v by

N;

%ZVd:Cf i: (ﬁiOFj,l)(Xi)(Pr (3.3)

i:N,;+1
The interpolation ;v for v € Ly(Q2) belongs to Y.
Remark. If v € W“(Q)2 for s > 1, then the usual interpolation .#,v is defined,
and we use that instead of Z,v. In the same way in (3.3), the interpolation .#)v
with zero on the boundary is defined from .#,v.

The following is shown in Lemma 4.1 [2].

Lemma 3.1. Assume that the triangulation , is regular. For any function v in
L'(Q)n W“(A,-)Z, we have that, for each K of T, contained in A;,
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|| pl”m;K h/ mH2(1/r-1/s) HVHL’,S,Ai
Jor m<L<k+ 1, where p; = p; o Fy,.

The error estimate of the L? projection %, is given in [2].

Lemma 3.2. Assume that the triangulation ), is regular. Given K € T, set Ag
be the union of all A; containing K,i <1< N,. Then, for any function v in
L'(Q) N W) (Ax)*, there is a constant C independent of h such that

< Ch[—m+2(l/r—l/s)

mrK X

[V — 2|l

||v||(,s,/11<7
for m<l<k+1.

The corresponding lemma for .#, to Lemma 3.2 is also given in Lemma
LA.2 [6].

If the triangulation 77, is exact, that is, 2, = Q then the error estimate of 92
is given in [2]. In our case, the triangulation .7, may not be exact. Before we
estimate the errors of the projection 922, we need the following lemma:

Lemma 3.3 (Poincaré’s inequality). Let K € 9, be a triangle sharing its one
face with 0Q),. Assume that a|,a,,a; be the vertlces of K and that a,,a; are on
0Q,,. Let by, bs be the two closest points on 0Q from a;, a3, respectively. Set K be
a subset of Q containing K, like in Fig. 2, which is surrounded by lhe other two
sides of K, the two line segments a\b; and asbs, and the curve y b1b3 on 09Q.
Then, for v.e H'(K)* with v, =0, we have

IVllx < (6(2,24) + B[ VVg,

where 6(Q, Q) is defined in (2.1).

(z1, z0)
b1 b3
ER 21, 22) as
K
az

Fig. 2. Triangle on 0€Q,.
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We estimate the errors of the L>-projection Z).

Theorem 3.4. Assume that the triangulation 7 is regular, and 5(Q, Q) < Ch*.
Given K € T, let Ax be the union of all A; containing K, i<1<Ny. If K € T,
has a nonempty intersection with 0Q,, then we denote by Ax

A AU U ¢

GCAg,GeT

where G is defined like K in Lemma 3.3. Then, for any function v in
L\(Q) N H (Ax)’, there is a constant C independent of h such that

||V - eJjgva,K g Chl_m”V”l‘z‘K'

where m = 0, 1.
Furthermore, if s > 2, then we have that for 0 <m <2,

IV = IVl SCH "Vl 5, for v e Wi ().

Remark. If K has no intersection with 0Q, then A x = Ag.

Proof. If X is in the interior of Q, then 372 is Z;,. Hence, the proof follows from
Lemma 3.2. We assume that K has a face or a vertex on 09Q;,. Then we re-
number the macroelements 4;,i = 1,...,j such that K C 4;. Among them, we
denote by 4,...,4;,; < j, the macroelements such that the node x; corre-
sponding to 4; belongs to Sy, fori=1,...,;. We have

v — %‘gv =v-— zj: (X))@, =V — RV + zj: pi(Xi) @y
i=j+1 i=1

where pldéf[)l. o FA’I_], and p; is obtained in (3.1). Owing to Lemma 3.2, it remains
to estimate p,(x;)¢;. Notice that for 0 <m <k,

||(Pi||m,1< <Ch'™.
By Lemma 2.2, we have

12 (xi) [ < M1pillo e ki < CllAillo e 65
where K’ is a 2-simplex containing x;. By the Sobolev inequality, we have

19, (X)| < ClIpillg o < Cllill2

Notice that the norms || - ||,z and [| - [|¢ on/?k(IA(") do not depend on #, in other
words, these norms are equivalent on P (K');
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[18illokr < Clipill i

where the constant C is independent of 4. For each v, we have

~ ~ ~ ~ —1/2
19:ll ¢ < Cllp; = Vg + Cll¥lg < Cllp: = Vil + ¥l r)] det Byl
<Ch(llps = Vil + IVllge)-

By Lemma 3.1, one has ||p;, — v|[x < Ch||v||, ,. Hence, we have
i) < CIIVlly, + A7 IV g0)-

Applying Lemma 3.3 we have
VIl < CRIIV Y| 3,

where 4 ; 18 a subset of A x corresponding to 4; D K;. Therefore, we have
1V = ¥ < CR V], + CH (]

We now consider .#). Let v € W;*(2)*. Since

jr
VoI =v— v+ Y v(x)e;,
—1

I

we need to estimate v(x;)¢,. Consider z = (z,z,) in Fig. 2. Then, for (z1,z,) € y
we have v(z) = v(z1,z9) + 0.V(Z)(z1 — z0) = 0,¥(Z)(z1 — 2z0), Where Z is a point
between (z1,z) and z. Since s > 2, we have W>*(Q)’ C %' by Sobolev em-
bedding theorem. Now that |z; —z| <5(Q,Q,) < Ch*, we have that for
X; € 0y, [V(x)| < CR*||VV||y o ¢ < CH?||V||,, g, Which completes the proof. O

4. Construction of finite element spaces satisfying LBB conditions

In this section, we construct a finite element space which satisfies the inf-sup
condition. On the Lagrange finite elements we consider polynomials as in [3].
Let K be an arbitrary triangle in .7, with vertices a,, a,, a;. Denote by f; the
side opposite to a;, and by n; and t; the unit outward normal and unit tangent
vectors to f; like in Fig. 3.

Let

def def def N
pL=MAls, pr,=Miids, p3=mii.

Consider the polynomial subspace, denoted by #2, of P,(K):

P def
21(K) =P(K) @ span{py, p, p3}.



H.-O. Bae, D.W. Kim | Appl. Math. Comput. 148 (2004) 823-847 833

ns

Fig. 3. Triangle in .7 ,.

Define finite element spaces
th:ef{v €6 () :v|, € 21(K) forall K € 7,} ﬂHé(Qh)z,
0, {q € 12(Q)) : qly € P(K) for all K € 7,}.

It is clear that any polynomial p € 2,(K) is uniquely determined by

p(a;), and /p-nida, 1<i<3,

Ji

where a; are the three vertices of K, and f; are the three sides of K. Any
polynomial p, € 2,(K) has the form:

3 3
Px = Z p(ai); + Z %iPjs (4.1)
P P
with o; € R. In other words, any polynomial p, € 2(K) is of the form
P (X) = e1A1(X) + €2/2(X) + €343(X) + aupy + 02p; + 033, (4.2)

where ¢; € R*> and o, € R are constants. We use the L’-interpolation
A)V|, € Pi(K) where k = 1. We now define the operator IT, € Z(X;X,). In
order to define IT,v for each v € X, we need to find the constants ¢; and o; in
(4.2). The number of unknowns on each K is 9.

We define IT,, in several ways depending on a 2-simplex K in 7. Letve X
be given. Then the first condition for the definition of I1,v is given by the
following:

(I,) Let K be a 2-simplex in 7. The I1,v satisfies
M,v(a) = #%v(a) for each vertex a of K. (4.3)
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If a vertex a is on 0, then IT,v(a) = 0.
The second condition for IT,v is given by the following:
(I1,) If K € 7, is interior of Q,, that is, K has no vertex sharing with 0, then
the second condition of II,v is given by

K(Hhv —v)-ndo =0, (4.4)

for each side f of K, where n is the unit outward normal vector on each
side f.

In this case, the side f corresponds to fs, fis, f19 for Ko, fi9, f20, f21 for K,
and so on. The number of unknown variables is 9, and the number of equations
is also 9. In [6], I1, is defined in this way.

(I1;) In case that K € 7, has two vertices a', a* in 09, like K;, K3, K4, K7 and
Ky in Fig. 4. For all sides f!, 13 of K not on 0€;, the second condition of
II,v is given by

Hhv-nda:/ v-ndo, (4.5)
suf? oK

where n is the unit outward normal vector on each face f*.

In this case, since we want to find IT,v in X;, C H&(Q)Z, II,v is zero on the
side /2 having the ends a', a3 like > of K, f; of K3, and so on. Hence, we have
from (4.1) and (4.2) that ¢; = ¢; = 0. Furthermore, o, = 0 since I1,v is zero on
f2. Therefore, ¢, and «;, o3 are undetermined yet, in other words, the number
of unknowns is 4. From (4.3) ¢, is determined, therefore, owing to (4.5) we
need one more condition, which will be specified in (I14) and (II5). (Notice that
f"and f; are different face notations.)

/\
aveasp

Fig. 4. Triangulations.
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(IT;) In case that K € 7, has one vertex a® in 0, like K>, K5 and K in Fig. 4.
For the side /2 of K not having a? as its end point, the second condition
of II,v is given by

/ (ITv —v) -ndo = 0. (4.6)
fz

For the other two sides ! and f3 of K,

/ (ITv —v) -ndo = 0. (4.7
flUfS

In this case, f? corresponds to f5 of K5, f; of K5 and f;3 of K. The other
two sides f3, f! of K correspond to f3, fi of K, f9, f1o of K5, and so on.
From (4.3), ¢;, ¢; and ¢; are determined, and owing to (4.6) and (4.7), like
the case (II,) one more condition is needed.
To the cases (I1,) and (IT;) we add the following third condition:

(I1;) Let K' and K? be two 2-simplices in (IT,) or (I13) sharing a 1-face £ with.
Then, on f the third condition of II,v is given by

/f (¥l = M¥l,e) - nda = 0, (4.8)

where n is the unit outward normal vector of K' on f. Here, f corre-
sponds to f3 of K| and K;, f4 of K, and K3, f7 of K5 and Ky, fi5 of K; and
Ks, and so on. If the number of 2-simplices in cases (1) or (I13) is s, then
from (I1,) we have one degree of freedom left. Finally, we add the last
condition to (I1y).

(I1s) Let K be a fixed 2-simplex in (I13), and let f be one of the face of K with
one end on 0Q;,. Then, on f the forth condition of I1,v is given by

/(Hhv —v)-ndo =0. (4.9)

f

Remark. (1) In (II5) we take only one 2-simplex K and also only one 1-face of
K. If we consider another K’ satisfying the condition in (II5), then the system to
find II,v is over determined. (2) With the view of (4.1) and from the definition
of IT,, we have that for each x € K,

w

3
Iv(x) = Z (2, 7(x) + Z %p;(X),

i=1

where a; are the three vertices of K. With the same point of view, the continuity
of IT,v is obtained easily. If k = 1 in the definition of %} in Section 3, then
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Z 9 (a) (4.10)

of which error estimate is given in Theorem 3.4.

We finally have a unique I1,v € X, for each v € X. Let us now estimate the
error of II,v for each v € X.

Lemma 4.1. Assume that the triangulation 7, is regular. Let Qy C Q, be the
union of 2-simplices K € I, having no vertices sharing with 0Q, like in case
(I1y). Then we have

IV — IT4¥],.0, < CR V]|, o, for all v € Hy(Q) (4.11)

for m =0 or 1, with a constant C independent of h and v.
Furthermore, if s > 2, then we have that for 0 <m <2,

V= I3V, 0, < CH " |[V]|y, for all v € Wy (Q)%. (4.12)

Proof. Let K be a 2-simplex in case (II,), for example, Ko in Fig. 4. Set a;,
i =1,2,3, be the vertices of K, and set f* be the 1-face of K opposite to a;. With
the view of (4.1) and from the definition (4.3) and (4.4) of II,, we have that for
each x € K,

3
I,v(x Z () 25(x) + Y o;p,(x)
=1
where

j;/ %(a;)4;) -n;de
ff,pj n;do '

(4.13)

Here, fﬂpj n,do = [, Ay4, do where 1f]—3 then f/ =1 and /" =2,if j=2
then j/ =1 and ]” =3, and if j =1 then // =2 and j” = 3. We use this index
notation for j, j/, j” for short.

From Lemma 2.2, we infer that

22t i < Cl det Be| 2B " Ay s,z < C| et Be| 2| B || (4.14)

since |ij/i/.,« |.x 1s a constant independent of 4 and K. Notice that

J A A
/i,/ij,/da:%/ Jydy dé (4.15)
i meas(f’) Jg
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and that

meas(f”) = 172
/(V—,%gv)~n,«do-‘< — [ v ,@2v2d&} .
i ' meas(f”)

By the trace theorem (Theorem 5.22 in Adams 2.2 or Theorem 1.1.5 in [6]),

— 1/2 —
{ - %‘2v|2d&} <[V — 2|, ¢ (4.16)
f/
From Lemma 2.2 and Theorem 3.4, we have
19 = vl < Cldet Bl (Ilv = A3l + 1B | v — 7, )
< C|det Be| 2RIVl 4. (4.17)

where Ag is defined in Lemma 3.2. From (4.13), (4.15), (4.16) and (4.17), we
have

o] < C] detBKrl/zhHV”],AK-
Therefore, from the above and (4.14) we have

SCR VI, (4.18)

m,K

where 4 is deﬁned in Lemma 3.2. By (4.18) and Theorem 3.4, we have (4.11).
For v € W>(Q)?, #)v& % as mentioned before. Instead of (4.17), we have

N ~1/2
[v— QZVHLK < C| det Bg| / h2||V||2,A,<’

hence, instead of (4.18), we have

Z %pP;

therefore, by combining this with Theorem 3.4 we complete the proof of
4.12). O

SCR" |V,
m,K

Theorem 4.2. If the triangulation T, is regular, and 5(Q, Q,) < Ch* holds, then
v — IV, o, < Ch'"|v|l, o for all v € H, Q) (4.19)

for m =0 or 1, with a constant C independent of h and v. We also have

/ div(v — ,v)q,dx =0 for all g;, € Oy. (4.20)
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Moreover, if s > 2, then we have that for 0 <m <2,

IV — I14¥],0, < CH*"||V]|,  for all v € Wy (Q) (4.21)

Proof. The identity (4.20) is obtained directly from the conditions (4.4), (4.5),
(4.6) and (4.7) depending on K by applying the divergence theorem.

In case (I1,), the proof is given in Lemma 4.1. Hence, it is enough to con-
sider simplices only in the cases (I1,) and (I15). For simplicity we use the labels
like in Fig. 5 and in Fig. 6, which Fig. 5 is in case (I1,) and Fig. 6 in case (I15).

Notice that there is finite many such simplices since the triangulation .7, is
regular, and that /4 times the number of such simplices is a constant depending
on Q, but independent of 2. We let K,i = 1,...,s be such consecutive 2-sim-
plices sharing at least one vertex with 02, and K**! = K' and K~! = K*. From
the above statement, we know sh is constant. We denote by f’ the face
K'NnK™* fori=1,...,s, and by f"~!/? the face of K’ between f’ and f'~! for
each i. We denote by 4;; the barycentric coordinates 4;, and by a,; the vertices
a; on K'. In Fig. 4, K’ corresponds to K, ..., Ks and more, and f* to fi and /"
to f3, f4, f7, /9, f10, 12, f15, f17, and others which do not show up in this picture.
In Fig. 4, fi=1/2 corresponds to f> of K, fs of K3, f5 of K», fi1 of K, etc.

Step 1: First we consider K and the face f taken in (II5). Then there is an
index i such that K = K’ and 1 <i<s, then f is one of f" and f~'. Let f = f".
In Fig. 4, for example, K could be K5 and f be fj,. The conditions (4.6) on

aiz1 fi-1/2 ai3

K i

ai2

Fig. 5. Case (II,).

ai fi-1/2 aiz3

Fig. 6. Case (II5).
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Y2 (4.7) on f1U 1, and (4.9) on f7 become (4.4) on f7, fi=1/2 and fi-!.
Thus we can prove (4.19) on K like in Lemma 4.1. Consider first the case that
K'*!is in case (IT5) like K in Fig. 4. Since we have (4.9) on /7 and (4.8) on the
intersection /7 of K’ and K'*!, we have the same situation like X'

Step 2: We now consider that K**! is in case (II,), for example, K’ = K¢ and
K™ = K; in Fig. 4. Let a; and a3 be the two vertices of K'*! on 0€;, and let a,
the rest vertex not on 0Q;,. Owing to (4.8) and (4.9) on 17, setting "'/ be the
face of K on 09, we have from (4.5) that

" II,vdo = l"“/zuf'*l vdo. (4.22)
Since ) (a,41.1) = #)(a;.13) = 0, and IT,v = 0 on f™'/2, we have
Iv(x) = X)) (a1 2) Air12(X) + %is1,1 P11 (X) + ip130,11 3(X). (4.23)
By (4.8) of II,, we have

0 )
0= /(e@h(am,z)}vm,z - V) M3 do + 0€i+1,3/ /Li+1.,1}~i+1,2 do.
S I

Thus we have

ff; (V - ﬂg(atﬂ,z)iiﬂ,z) ‘N4 3do
Oiy13 = .
ffi /11+1A1}~i+1,2 do

In a similar way in the proof of Lemma 4.1, we obtain

051,33 gt < CHU W] 3 (4.24)

ki+1’

where 4 gi+1 1s defined similarly as in Theorem 3.4. Owing to (4.23), we have
that

/ (IIyv — ¥) -0y 1 do = / (gfgv(aiﬂz)}qﬂ.z —V)-ny11de
f‘H»l fl'+l
+ O Jir122ir13da,
fi+l
/ (HhV - V) ‘N 3do = / (%2"(31‘+1,2)/1i+1,2 - V) N1 3do
i fi

+ a3 [ Aiiidi2do.
fi

From (4.5) we have that

/41/2 Vg2 do = /-H (HhV — V) ) AN ] do + /(Hhv — V) N3 do.
S S S
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Hence, we have

/ Vel do
f“ 1/2

0 "
= / (@hv(am,z)ﬂwu - V) ) AR do + Oit1,1 / /1i+12)~i+1,3 do
f:+l fi+l

0 "
+ /'(%hv(am,z)lm,z —V) -nyi3do + oy 3 / Jiv114ir12do.

[
Thus, we have
) o v — AWV(a;412)Ai12) -nda . f/ li+1,12i+12do
i+1,1 — i+1,3 .
ffm Jiv124ir13do ff.ﬂ Jiv124ir13do

Notice that

aKi+1 — 1/2
< meas(eK™) U |€—@2v|2d&} .
meas(0K™*!) | Jag

/ ] (V — %2V(ﬂi+172)}4+1‘2) -ndo
oK

By the trace theorem in [1], we have

— 1/2 —
[/ v — ﬂﬁvfd&} < C|V — BV, gt
aKHl ’
From Lemma 2.2 and Theorem 3.4, we have
19 = ] o < €1 det Bl (v = vl s + 1Bl Iv = ] )

< Cldet B vl 4

Agir1”
Thus, in a similar way in the proof of Lemma 4.1, we have

| 110441, 1|m kit < <Ch'” vl Agirt (4.25)
Therefore, from (4.10), (4.23)—(4.25), and Theorem 3.4 we have

[V = T3], s < CR" |V 4 (4.26)

kitl’

where Agii is defined similarly as in Theorem 3.4.
Step 3: We also have two cases such that the next 2-simplex K+ is in case
(ITy) or in case (IT5). In case (I15), we have

3
v = A)(3;121) 221 + By(Ai23) Aigas + Z Oi12,jPi+2,)> (4.27)
=1
and in case (I1,),

Iy = %2(5‘#2,2)/1#2,2 + Oi21P401 T+ %it2,30i42,3 (4.28)
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First consider K™*? in case (II;). From (4.27) we have that for j =1, 2, 3,
(v —v) - no; = ﬂg(awz‘l)iiﬁ,l Mo — Vel
+ <%2(ai+2,3)/1i+2«,3 ‘Dot ai+2.j/1i+2,j’ /15+2,j”7 (4'29)

where j, j’ € {1,2,3}, and j, j/, j” are all different. Owing to (4.6) and (4.7), we
have from (4.27) that

/ V-n;s3do +/ V-nyy1do
f'z+l f'z+’l

0 0
=/ Ry (Aii2,1) Aiv2 1 - Mipzdo + | . Ry(i21) Ai21 - M2 do
j'1+ /'1+

+/ e%’g(aﬁzg)iwzg 'ni+2,3d0'+/ e@g(awzg)iwzg ‘N do
fi+] f

i+2
+ Oy, / Aivaphiva3do + Ofi+243/ Jisa14izapda.
fi+2 f'1+1
Since 4;123(x) = 0 for x € /™! and Z;2,(x) = 0 for x € /72, we have

/ 1(V - 9?2(3#2‘1)/1#271) | UEE R do + / (V - 9?2(3#273)/1#2,3) -mdo
f'l+ f

i+2

=tz Aiv222it23d0 + oy s / Aiz21Aivap do. (4.30)
fi+2 fx+l
Since n; 23 = —n;;11, we have by (4.8) that
/ (ITyv — V) - n;y23do = —/ (ITyv —v) -0y 1 do. (4.31)
fH»l /‘H»l

Thus if K™*! is in case (I15) then we have from (4.28) for i + 1 that
/ (IIyv — ¥) - 03y 1 do = / () (ai113)Aiv13 — V) -0y do
/‘H»l fH»I
+ O‘i+1«,1‘/ Aiv124ir13do. (4.32)
fi+]

From (4.29), (4.31) and (4.32), we have

/ (%2(31'%3)’1#13 - V) RLES R do + Oit1,1 / /li+1¢2/1i+1,3 do
fit] fitl

0 "
= —/ 1(%h(3i+2,1)/1i+2,1 - V) “Mig23 do — fxi+2,3/ 1 /ti+2,1/1i+2,2 do.
fi+ fi+

Therefore, as we have done in the above, we obtain (4.24) for i 4+ 2. If K™ is in
case (II,) then we have from (4.28) for i + 1 that



842 H.-O. Bae, D.W. Kim | Appl. Math. Comput. 148 (2004) 823-847

/ 1(HhV - V) LA do = / ](«%2(31‘+1,2)}~i+1,2 - V) LLIAS R do
Vias i+

+ 01,1 / 1 Jir122ir13do.
]”H»
From (4.29) and (4.31), we have

0 ,
/ (%h(am,z)im,z —V) ‘M1, do + o / Aiv12hi13do
fH»l fH»]

= —/ l(«@g(awz,l)iwz,l - V) "Mig23 do — 0<i+2,3/ 1 ii+241/1i+2,2 do.
A A
Therefore, as we have done in the above, we obtain (4.24) for i + 2 in this case.
Hence if we repeat the same process then from (4.30) we obtain (4.24) for

it2,10i42,1-
Step 4: Now we assume that K2 is in case (I1,). Then from (4.28), we have

that for j = 1,3,
IV M) = Ry (Ai22) ivan Mgy + Ui+2,jhi42, Ay jf s (4.33)

where j/,j” € {1,2,3}, and j, , j” are all different. Owing to (4.5), we have from
(4.28) that

/ v~n3da+/ v~n2da+/ v-n do
fi+l i3/ 2

0 0
= %h(awzz)iwz,z ‘np3do + / %h(awzz)iwz,z Do) do
fi+l fi+2

+ %2 / Liv22livas + %23 Aiva1hit22
fi+2 fi+1
Consider (4.31) on fi*! = K1 0 K2, If K'*! is in case (IT;) then we have from
(4.32), (4.31) and (4.33) that

0 "
/_ l(ﬂh(ams)imﬁ - V) "My do + o1 / 1 lit1 22413 do
fit fit

= —/ l(ﬂg(awz,z)/{m‘z —V) Ny 3do — 0<f+2,3/ ] Aix212i22do.
s e
Thus, we obtain (4.24) for i + 2, and also (4.26) in a similar way in Step 2. We
also obtain (4.26) for K'*! in case (I1,) in a similar way in Step 3. By sum-
mation from i = 1, to s we complete the proof of (4.19).
Forve WOZ‘S(Q)z, instead of (4.24) and (4.25) as in the proof of Lemma 4.1,
we obtain that the left sides are bounded by Chz"”||v||2‘jk[+l. Hence, we obtain
VI8 e < O]

i+l
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As above, if we follow each step, then we can complete the proof of (4.21). O

Remark. If we take m = 1 in (4.19), then we have
v — I, < Clivlly,

which implies (1.4). Thus, we have shown that (1.2) is solvable in X} x Q.

5. Error estimate

We assume that 0Q is of class 4> and f € L*(Q)°,2 < s < co. We denote by
(u, p) the solution of (1.1), then by Proposition 2.1 we have

ue Q)7 pew(Q).

By Sobolev embedding theorem, we have W>*(Q)* C 4'(Q)* and W'(Q) C
6 (Q).

Suppose that Q, C Q and §(€2,, Q) < Ch%. By setting zero outside of @), we
extend functions v, € X}, and ¢, € O, on Q, and we may consider the functions
defined on Q. We denote these functions by the same notations if there is no
confusion. We denote the L-inner products on Q by (-,-),, and on Q, by
(- '>Qh' Notice that for all v, € X,

— Au-v,dx = — /Au-vdx
fyawmax=-5> [ 4

KeTy

= Z /Vu~Vvhdx— Z o,u-v,do
K

KeT, KeT, /K

and that

Vp‘vhdx:—z /pdivvhderZ / pv, -ndo.
K oK

Q KeT, KeT,

Since v, € X, C %°, we have
—/Q Au - v dx = (Vu, Vv,
)
and
/Q Vp - v, dx = —(p, divvh)Qh.
i

Taking the inner product with v =v, € X, in (1.1), we have

(Vu, Vi) g — (P, divvi) g = (£, V1), - (5.1
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Subtract (1.2) from (5.1) to have
(V(u—w,), vvh>gh = (p — Pn, diVVh>Qh
for all v, € X,,. Define

VE{vEX : (g,divy)g =0 forall g € 0},

Vi {vi € X« (g, divvy)o, =0 for all g, € 0}
For v, € V, and ¢, € Oy, by (5.2) we have
(V—w),V(u—uw)),
= (Vu—w), V(u—vi))g, +(V(u—w), V(vs —wm))g,
= (Vu—w),V(u—v))g + @ —pndiv(v, —w,)),,
<V (u—w)llg, [V =vi)llg, + [lp = gallo, IV (Ve — wi) g,
since for all ¢, € Oy,
P =+ @ — g div(vi —w,)) o, = (P — @, div(vy, — W) g, .
By Young’s inequality, we have
1V (u = w)llo, <3V (u=vi)llg, +3llp — il

for all v, € ¥, and ¢; € Q;. Thus, we have the following:

Proposition 5.1. Let (u,p) € H!(Q)* x L2(Q) be a solution of (1.1) and (w,, p;) €

X, X Oy, a solution of (1.2). Then, we have
_ <3 _ i _
19 (u=w)llg, <3 inf [V(u=vi)lo, +3 inf [Ip— gl

Since the usual interpolation .#}v defined by .#v(x;) = v(x;) at each node
forv e H| (Q)” is not be defined, L2-interpolation 2, is introduced in Section 3.
However, we have already known that for s > 2 solution u of (1.1) belongs to
W25(Q)%, so that u € 4°(Q)” by Sobolev embedding theorem. Thus, for each
ve w(Q)” with s > 2,.7v makes sense, and Zv = .#%v. We also have the

following estimate:

Iy =7Vl + AV (v = 79 [l < CR2(IVV] .

for K € 7,. Consult with the statement following Lemma 3.2 or refer to

[4,5,11].

Since #v = % for v € W>*(Q)?, for the construction of the finite element

space and IT,, we use .#,. From Proposition 5.1, we have

9= w)llg, < CIV (= T, +C inf I aill,
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On the other hand, by taking g, as the mean value of p on each K for K € .7,
we have

1= aila, <4l VPl (5:3)
Therefore, by (4.21) we have
19— w) g, < Ch(lulyg + [Pl o). (5:4)

Hence, by using the projection I1,, we have the error estimates.

Theorem 5.2. Assume that Q is bounded open subset in R* of class 6*,f € LS(Q)2
with 2 < s < oo, and §(;,Q2) < Ch*. Let (u,p) be a solution of (1.1) given in
Proposition 2.1, and let (w,, p) € X, X Oy be a solution of (1.2). Then,

19 (= wllg, + llp = pillg, < Ch(Julg + P, 0)-

Proof. It remain only to estimate the error of the pressure. Look at the pres-
sures p and p;,. We have from (5.2)

(P = qn, divva) g, = (V(y — ), VVi)o + (p — qu, divVi) g,
for all v, € X, and ¢, € Q;. By the inf-sup condition (1.3), we have

s — o, <  sup LTV
h — Yh s
o ﬁ Vi €X) vahHQh

for all g, € Q,. Thus,

1
< 5 (190w~ wllo, +11p gl

Ip=pil < inf (Ip = aillo, + Ips — aillo,)

< inf ((1 +%>|p—qh||g,, +%IIV(uh —u)llg,,>.

9nEOn

By (5.3) and (5.4), we complete the proof. [

Remark. Since (u,p) € W>*(Q)* x (W'(Q) N L2(Q)), we have
IV —w)llg, + P —pillg, < Ch,

where the constant C does not depend on /.
For the L? error we use a duality argument.

Theorem 5.3. With the same assumptions in Theorem 5.2, we have

o= wllg, < O (Il + ol )
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Proof. We have by the duality argument that

<gau_uh>Qh
[u—wllg, = sup ———

(5.5)
geL? (@)’ Hg”Qh

We extend g on Q U Q, by setting zero outside £,,. By restricting g on £ we have
g € L*(Q)*. Thus, there is a unique solution for each g e L*(Q)°, there is a
unique solution (vg, f4,) such that

{ (Vvg, VEIw), + (ug, diviw), = (g, fw),, for all fw € Xo,

(Vvg, o = 0 for all u € L*(Q). (5.6)

Then, by the regularity of Stokes equations on smooth domain @, we have
Vel + litgll o < Cligllq- (5.7)
Taking fw = u — u,, in (5.6), we get
(V. V(U — ) g, + (g, diviu —w)) g, = (80— us)g,.
By (5.2), we have
(VVi, Va—w,)) o = (p = pr, divvi) o = (p,divvy) = (p — qi,divvs)o
for all v, € V}, and ¢, € O,. Since v € V, we have
(divvg, p — ) o =0 for all y, € Q.
Thus we have that for all v, € V}, and ¢, 1, € Oy,
(g u—w)g = (V(Vg = Vi + V1), V(u—w,))g, + (g, div(u —w))g
= (V(vg =), V(u —w,))g, + (divv,, p — gi)
+ (g, div(u —w,))g,
= (Vv =), V(o —w) g, + (div(vs = ¥g),p — qu)g,
+ (K, div(u —wy)) g,
= (V(vg =), V(u —w,))g, + (div(vy — ¥g),p = qn)g,
+ (g — > div(a —wy)) g,

h

since (w;, div(u —u,)), = 0. We have that for all v, € X, and gy, i, € Oy,
gou = w)o, | < (V0% = W)l + 1t — 0,
(V= wllg, + 1P = alle, )-

Thus, taking v, = .#,v, and p, the average of p, on each K, we have by (5.7)
that
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(g, —w)g, | < Ch(IV?Vyllg + [Vl (IIV(ll —w)llg, +1lp _Ph”Q,,)

< Chllglg, (I =w)lg, + 1P = pillg,)-
Thus we have by Theorem 5.2 and (5.5) that
[u—wlg, < CH([|V?ullg + [[VPlg).

which completes the proof. [

Corollary 5.4. With the same assumptions in Theorem 5.2, we have

|lw— “hHQ,, < CH.
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